

MINI-SYSTEMS Precision Components & Services

History of Mini-Systems, Inc. (MSI)

Mini-Systems, Inc. is a leading manufacturer of precision thick and thin film chip resistors, capacitors, metal/glass sidewall packages, custom thick film hybrid circuits, and multi-chip modules. Since 1968, our commitment to total quality and responsive customer service has helped us maintain this leadership status. MSI is consistently called upon when high reliability and high performance are required in a broad range of applications including satellite, medical, spacecraft, and military. Our parts have been supplied for programs such as:

- ♣ F-18
- ◆ MX
- Trident
- Patriot
- Space Shuttle
- Voyager
- * Mariner
- Heart Pacers

Since our inception, we have known that understanding customer service and fast response is the key to building long-lasting customer relationships. We look forward to giving you a personal introduction to our company in the near future.

Quality

- Uncompromising Product Specifications
- Process Integrated Quality Assurance
- Advanced Testing Equipment and Facilities

Reliability

- Established Reliability of QPL Products to MIL-PRF-55342
- Innovative Design Criteria for Maximum Product Performance
- SPC Process Control and Monitoring

Delivery

- Consistently the Shortest Available Lead Times
- Expedited Delivery Available for Your Critical Needs
- Many Standard Products Maintained in Stock

Service

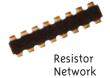
- Knowledgeable Sales and Engineering Support
- Rapid Response to All Your Questions and Inquiries
- Committed to Total Customer Satisfaction

Expertise

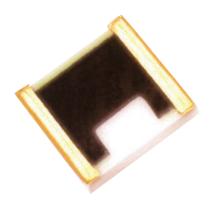
- Highly Trained, Dedicated Staff
- Extensive Microelectronics Background in Materials, Assembly, Design, and Testing
- Customized Solutions to Your Hybrid Microelectronics Requirements

Thick Film

ISO 9001 Certified


- ♦ The WORLD'S FIRST Supplier of QPL/ 1 & 13, 0502 & 0302 Style Resistors
- High Reliability, Precision, Thick Film Chip Resistors and Networks
- QPL Approved to MIL-PRF-55342, "T" Space Level Qualified
- Surface Mount, Wire Bondable, and Flip Chip Configurations
- T and Pi, Low Loss, Chip Attenuators
- Standard and Custom, Gold on Ceramic, Jumpers and Standoffs

Bondable Resitor



Wraparound Resistor

What's ahead...

Ordering MSI Thick Film Parts

Part Numbering System, Case Sizes, Power Ratings, Voltage Ratings, TCR's & Electrical Performance Characteristics

Mini WA / WA Series Resistors

MWA & WA Mechanical Data —Style/Type, Case Size, Length, Width, Thickness & Pad Width

6-7

Mini HW / HW Series Resistors

MHW & HW Mechanical Data —Style/Type, Case Size, Length, Width, Thickness & Pad Width

8-9

Mini MSR / MSR Series Resistors

MSR Mechanical Data - Style / Type, Case Size, Length, Width, Thickness & Pad Width

10-11

QPL Precision Resistors

Top Contact (MSR) & Wrap Around (WA) Descriptions, Part Numbering System, Electrical & Mechanical Data

Thick Film Chip Attenuators

Description, Mechanical & Electrical Data & Part Numbering System

18-19

Thick Film Jumpers

Description, Mechanical & Electrical Data & Part Numbering System

Mounting Pads And Kits

Thick Film Gold Mounting Pads, Part Numbering System, Jumper & Mounting Pad Kits

Surface Mount Resistor Networks

Description, Mechanical & Electrical Data, Electrical Performance Characteristics & Part Numbering System

MSIRP Reliability Program

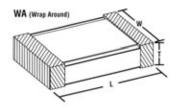
Samples Being Selected, Applicable Military Standards, Tests Being Performed & Data From Test Results

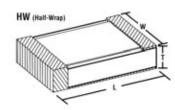
24-25

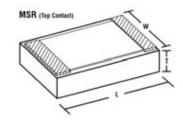
Thick Film Process Capabilities

Products, Applications, Metallizations, Substrates, Testing & Equipment


Construction of MSI Precision Chip Resistors


Illustration Of The Unique 5 Sided Wrap Around Resistor, Design & Fabrications Used To Maximize Performance


28


Ordering MSI Thick Film Parts

PART NUMBER DESIGNATION

EXAMPLE: WA81PG -1001F-NS62TR

Wrap Around, 0502 case size, Platinum Gold base metal, 1kΩ 1% tol., Nickel Barrier, Sn62 Solder, Tape & Reel, Std TCR

Style: WA

WA = Wrap Around MWA = Mini Wrap Around HW = Half Wrap MHW = Mini Half Wrap MSR = Top Contact

Prefix G = RoHS (Ex.GWA=RoHS Wrap Around)

Type: 81 See Table to right

Termination: PG Material

Base Metal

G = **Gold** for wire bonding (MSR only) PG = Platinum Gold PS = Palladium Silver SM = Surface Mount*

*Base metal determined by value And TCR (Nickel Barrier required)

Value: 1001

Resistance Value

Four digits (xxxx) with provisions for five digits (xxxxx) if necessary. The first three digits represent significant figures. The last digit represents the number of zeros to follow. When fractional values of an ohm are required, the letter "R" is used as a decimal point.

Tolerance: F

B = 0.10%P = 25%C = 0.25%N = 30%F = 0.50%K = 10%Y = MaxL = 15%Z = Special G = 2% M = 20%

Metal Options: N

B = Back Metal (MSR only) N = Nickel Barrier

Blank = No Metal Options

U = Untinned No solder

Termination: S62 **Finish**

Metal option N termination untinned finish= nickel, gold plated.

S60 = Sn60Lead Free Options S62 = Sn62S96 = Sn96S63 = Sn63S305=Sn305

Options: TR

TR = Tape and Reel (Heat seal std) Pressure seal & Paper tape available

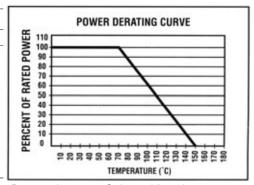
Packaged in chip trays if not specified TL = Trimless

P = Optimum TCR otherwise std.

4 Digit # = Special Requirement Identifier

Style	Type	Case Size	Power (Watts)	Voltage (Volts DC)
	96	0201	0.015	20
MWA	84	0202	0.020	25
	66	0203	0.040	30
MHW MSR	98	0302	0.040	30
	91	0303	0.040	40
	10	0404	0.050	45

Style	Type	Case Size	Power (Watts)	Voltage (Volts DC)
	20	0402	0.050	40
1474	81	0502	0.100	50
WA	56	0503	0.125	80
HW	19	0504	0.100	70
MSR	82	0505	0.125	80
	93	0603	0.100	90
	61	0604	0.125	65
	86	0805	0.200	125
	5	1002	0.100	175
	83	1005	0.250	180
	90	1010	0.500	160
	87	1206	0.250	190
	94	1210	0.550	230
	97	1218	1.500	185
	80	1505	0.300	300
	88	2010	0.800	350
	85	2307	0.500	380
	89	2512	2.000	475
	68	3939	5.000	750
	30	5024	4.000	1000
	28	6632	8.000	1400
	26	6645	8.000	1400


TCR's for MSI Resitors

RESISTANCE RANGE IN OHMS

Type	0.1 to < 1	1 to < 5	5 to < 10	10 to < 1M	1M to < 10M	10M to < 100M	100M to < 250M	250M to < 500M	500M to < 750M	750M to < 1G
96	400	300	200	100	200	200	300	300	400	400
84	300	100	100	100	200	200	300	300	400	400
66	300	100	100	100	200	200	300	300	400	400
98	300	100	100	100	100	200	300	300	400	400
91	100	100	100	100	100	100	150	200	300	300
10	100	100	100	100	100	200	200	200	300	300
20	300	100	100	100	100	100	300	300	400	400
81	100	100	100	100	100	100	200	200	300	300
56	100	100	100	100	100	100	200	200	300	300
19	100	100	100	100	100	100	150	200	300	300
82	100	100	100	100	100	100	150	200	300	300
93	100	100	100	100	100	100	150	200	300	300
61	100	100	100	100	100	100	150	200	300	300
86	100	100	100	100	100	100	300	200	300	300
5	500	200	200	100	100	200	200	200	200	200
83	100	100	100	100	100	100	150	200	300	300
90	100	100	100	100	100	100	200	300	400	400
87	100	100	100	100	100	100	150	200	300	300
94	100	100	100	100	100	100	200	300	400	400
97	200	100	100	100	100	200	200	300	400	400
80	500	300	100	100	100	100	100	100	200	200
88	100	100	100	100	100	100	150	200	300	300
85	500	300	100	100	100	100	100	100	200	200
89	100	100	100	100	100	100	150	200	300	300
68	100	100	100	100	100	100	200	300	400	400
30	200	100	100	100	100	100	150	200	300	300
28	200	100	100	100	100	100	150	200	300	300
26	200	100	100	100	100	100	150	200	300	300

^{1.} Table list optimal TCR's, add 200 standard TCR's 2. Optimal TCR's valid for SM termination, may not be available for all other terminations.

Electrical Performance Characteristics							
MIL-PRF-55342	MIL-PRF-55342 Requireme	nt MSI Typical					
Short Term Overload	±0.25%	±0.03%					
High Temperature Exposure	±0.50%	±0.05%					
Thermal Shock	±0.50%	±0.07%					
Low Temperature Operation	±0.25%	±0.05%					
Resistance to Bonding Exposure / Solder	ing Heat ±0.25%	±0.09%					
Moisture Resistance	±0.50%	±0.06%					
Stability (Life 70°C 2,000Hrs)	±0.50%	±0.04%					
Stability (Life 70°C 10,000Hrs)	±2.00%	±0.07%					

Power rating at 70° C derated linearly to 0% power at 150°C ($P=E^{2}R$).

Mini WA Series Resistors

Style	Type	Case Size	Length Inches (mm)	Width Inches (mm)	Thickness ¹ Inches (mm)	Pad Width Inches (mm)
MWA	96	0201	0.024 ± 0.002 (0.610 ±0.051)	0.012 ±0.002 (0.305 ±0.051)	0.008 ±0.002 (0.203 ±0.051)	0.006 ±0.002 (0.152 ±0.051)
	84	0202	0.024 ± 0.002 (0.610 ±0.051)	0.021 ± 0.002 (0.533 ±0.051)	0.008 ±0.002 (0.203 ±0.051)	0.007 ±0.002 (0.178 ±0.051)
	66	0203	0.027 ± 0.002 (0.686 ±0.051)	0.031 ±0.002 (0.787 ±0.051)	0.012 ±0.003 (0.305 ±0.076)	0.008 ±0.002 (0.203 ±0.051)
	98	0302	0.032 ± 0.003 (0.813 ±0.076)	0.020 ± 0.003 (0.508 ± 0.076)	0.012 ±0.003 (0.305 ±0.076)	0.008 ±0.003* (0.203 ±0.076)
	91	0303	0.030 ± 0.003 (0.762 ±0.076)	0.030 ± 0.003 (0.762 ±0.076)	0.012 ±0.003 (0.305 ±0.076)	0.008 ±0.003* (0.203 ±0.076)
	10	0404	0.037 ± 0.003 (0.940 ±0.076)	0.035 ± 0.003 (0.889 ± 0.076)	0.012 ±0.003 (0.305 ±0.076)	0.012 ±0.004 (0.305 ±0.102)

^{*} Dimensions are for back termination only.

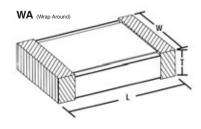
WA Series Resistors

Style	Туре	Case Size	Length Inches (mm)	Width Inches (mm)	Thickness ¹ Inches (mm)	Pad Width Inches (mm)
WA	20	0402	0.044 ±0.004 (1.118 ±0.102)	0.022 ± 0.003 (0.559 ± 0.076)	0.013 ±0.003 (0.330 ±0.076)	0.011 ±0.004 (0.279 ±0.102)
	81	0502	0.054 ±0.005 (1.372 ±0.127)	0.025 ± 0.003 (0.635 ±0.076)	0.013 ± 0.003 (0.330 ±0.076)	0.015 ± 0.005^{1} (0.381 ±0.127)
	56	0503	0.050 ±0.005 (1.270 ±0.127)	0.032 ±0.003 (0.813 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.015 ±0.005 (0.381 ±0.127)
	19	0504	0.055 ±0.005 (1.397 ±0.127)	0.042 ±0.003 (1.067 ±0.076)	0.013 ± 0.003 (0.330 ±0.076)	0.015 ±0.005* (0.381 ±0.127)
	82	0505	0.054 ±0.005 (1.372 ±0.127)	0.050 ±0.003 (1.270 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.015 ±0.005 ^{1*} (0.381 ±0.127)
	93	0603	0.065 ±0.005 (1.651 ±0.127)	0.032 ±0.003 (0.813 ±0.076)	0.013 ± 0.003 (0.330 ±0.076)	0.015 ±0.005 ^{1*} (0.381 ±0.127)
	61	0604	0.065 ±0.005 (1.651 ±0.127)	0.042 ±0.003 (1.067 ±0.076)	0.018 ±0.003 (0.457 ±0.102.)	0.017 ±0.005 (0.432 ±0.127)

^{*} Dimensions are for back termination only.

¹ Solder may add an additional 0.004" in thickness.

¹ Solder may add an additional 0.004" in thickness.



WA Series Resistors

Style	Туре	Case Size	Length Inches (mm)	Width Inches (mm)	Thickness ¹ Inches (mm)	Pad Width Inches (mm)
WA	86	0805	0.080 ±0.006 (2.032 ±0.152)	0.050 ± 0.003 (1.270 ± 0.076)	0.018 ±0.003 (0.457 ±0.076)	0.015 ±0.005 (0.381 ±0.127)
	5	1002	0.105 ±0.005 (2.667 ±0.127)	0.027 ± 0.003 (0.686 ±0.076)	0.013 ± 0.003 (0.330 ±0.076)	0.020 ±0.005 (0.508 ±0.127)
	83	1005	0.104 ±0.006 (2.642 ±0.152)	0.050 ±0.003 (1.270 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.015 ±0.005 (0.381 ±0.127)
	90	1010	0.104 ±0.006 (2.642 ±0.152)	0.100 ±0.003 (2.540 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.015 ±0.005 (0.381 ±0.127)
	87	1206	0.127 ±0.006 (3.226 ±0.152)	0.063 ±0.003 (1.600 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.019 ±0.005* (0.483 ±0.127)
	94	1210	0.125 ±0.005 (3.175 ±0.127)	0.100 ±0.003 (2.540 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.019 ±0.005 (0.483 ±0.127)
	97	1218	0.120 ±0.005 (3.048 ±0.127)	0.180 ±0.003 (4.572 ±0.076)	0.030 ± 0.005 (0.762 ±0.127)	0.025 ±0.005 (0.635 ±0.127)
	80	1505	0.155 ±0.005 (3.937 ±0.127)	0.050 ± 0.003 (1.270 ± 0.076)	0.018 ±0.004 (0.457 ±0.102)	0.015 ±0.005 (0.381 ±0.127)
	88	2010	0.210 ±0.006 (5.334 ±0.152)	0.098 ±0.003 (2.489 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.020 ±0.005 (0.508 ±0.127)
	85	2307	0.228 ±0.005 (5.791 ±0.127)	0.075 ±0.003 (1.905 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.020 ±0.005 (0.508 ±0.127)
	89	2512	0.256 ±0.006 (6.502 ±0.152)	0.124 ±0.003 (3.150 ±0.076)	0.030 ± 0.005 (0.762 ±0.127)	0.020 ±0.005 (0.508 ±0.127)
	68	3939	0.394 ± 0.008 (10.008 ± 0.203)	0.390 ±0.005 (9.906 ±0.127)	0.030 ± 0.005 (0.762 ±0.127)	0.043 ±0.005 (1.092 ±0.127)
	30	5024	0.501 ±0.008 (12.725 ±0.203)	0.246 ±0.004 (6.248 ±0.102)	0.030 ± 0.005 (0.762 ±0.127)	0.058 ±0.005 (1.473 ±0.127)
	28	6632	0.674 ±0.008 (17.120 ±0.203)	0.332 ±0.005 (8.443 ±0.102)	0.030 ± 0.005 (0.762 ±0.127)	0.067 ±0.006* (1.702 ±0.152)
	26	6645	0.675 ±0.009 (17.145 ±0.229)	0.499 ±0.005 (12.675 ±0.127)	0.030 ± 0.005 (0.762 ±0.127)	0.067 ±0.006* (1.702 ±0.152)

^{*} Dimensions are for back termination only.

¹ Solder may add an additional 0.004" in thickness.

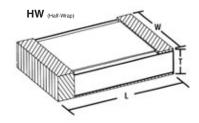
Mini HW Series Resistors

Style	Type	Case Size	Length Inches (mm)	Width Inches (mm)	Thickness ¹ Inches (mm)	Top Contact Pad Width Inches (mm)
MHW	96	0201	0.023 ±0.002 (0.584 ±0.051)	0.012 ±0.002 (0.305 ±0.051)	0.008 ± 0.002 (0.203 ±0.051)	0.005 ±0.002 (0.127 ±0.051)
	84	0202	0.023 ±0.002 (0.584 ±0.051)	0.021 ±0.002 (0.533 ±0.051)	0.008 ±0.002 (0.203 ±0.051)	0.005 ±0.002 (0.127 ±0.051)
	66	0203	0.026 ±0.002 (0.660 ±0.051)	0.031 ±0.002 (0.787 ±0.051)	0.013 ±0.003 (0.330 ±0.076)	0.006 ± 0.002 (0.152 ±0.051)
	98	0302	0.031 ±0.003 (0.787 ±0.076)	0.020 ±0.003 (0.508 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.006 ± 0.002 (0.152 ±0.051)
	91	0303	0.029 ±0.003 (0.736 ±0.076)	0.030 ±0.003 (0.762 ±0.076)	0.0130 ±0.003 (0.330 ±0.076)	0.006 ± 0.002 (0.152 ±0.051)
	10	0404	0.036 ±0.003 (0.914 ±0.076)	0.035 ±0.003 (0.889 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.009 ±0.002 (0.229 ±0.051)

¹ Solder may add up to an additional 0.004" in thickness.

HW Series Resistors

Style	Type	Case Size	Length Inches (mm)	Width Inches (mm)	Thickness ¹ Inches (mm)	Top Contact Pad Width Inches (mm)
HW	20	0402	0.043 ±0.004 (1.092 ±0.102)	0.022 ±0.003 (0.559 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.009 ± 0.002 (0.229 ±0.051)
	81	0502	0.051 ±0.004 (1.295 ±0.102)	0.025 ±0.003 (0.635 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.010 ± 0.002 (0.254 ±0.051)
	56	0503	0.048 ±0.004 (1.219 ±0.102)	0.032 ±0.003 (0.813 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.011 ±0.002 (0.279 ±0.051)
	19	0504	0.053 ±0.004 (1.346 ±0.102)	0.042 ±0.003 (1.067 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.011 ±0.002 (0.279 ±0.051)
	82	0505	0.051 ±0.004 (1.295 ±0.102)	0.050 ±0.003 (1.270 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.009 ± 0.002 (0.229 ±0.051)
	93	0603	0.063 ±0.004 (1.600 ±0.102)	0.032 ±0.003 (0.813 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.010 ± 0.002 (0.254 ±0.051)
	61	0604	0.063 ±0.004 (1.600 ±0.102)	0.042 ±0.003 (1.067 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.013 ±0.002 (0.330 ±0.051)


¹ Solder may add up to an additional 0.004" in thickness.

HW Series Resistors

Style	Type	Case Size	Length Inches (mm)	Width Inches (mm)	Thickness ¹ Inches (mm)	Top Contact Pad Width Inches (mm)
HW	86	0805	0.078 ±0.004 (1.981 ±0.102)	0.050 ±0.003 (1.270 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.013 ± 0.002 (0.330 ±0.051)
	5	1002	0.103 ±0.004 (2.616 ±0.102)	0.027 ±0.003 (0.686 ±0.076)	0.013 ±0.003 (0.330 ±0.076)	0.016 ±0.002 (0.406 ±0.051)
	83	1005	0.101 ±0.004 (2.565 ±0.102)	0.050 ±0.003 (1.270 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.013 ±0.002 (0.330 ±0.051)
	90	1010	0.101 ±0.004 (2.565 ±0.102)	0.100 ±0.003 (2.540 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.012 ± 0.002 (0.305 ±0.051)
	87	1206	0.123 ±0.004 (3.124 ±0.102)	0.063 ±0.003 (1.600 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.015 ±0.002 (0.381 ±0.051)
	94	1210	0.123 ±0.004 (3.124 ±0.102)	0.100 ±0.003 (2.540 ±0.076)	0.018 ±0.004 (0.483 ±0.102)	0.015 ±0.002 (0.381 ±0.051)
	97	1218	0.118 ±0.004 (2.997 ±0.102)	0.180 ±0.003 (4.572 ±0.076)	0.030 ±0.005 (0.762 ±0.127)	0.022 ± 0.002 (0.559 ±0.051)
	80	1505	0.153 ± 0.004 (3.886 ± 0.102)	0.050 ±0.003 (1.270 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.012 ± 0.002 (0.305 ±0.051)
	88	2010	0.207 ±0.004 (5.258 ±0.102)	0.098 ±0.003 (2.489 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.017 ±0.002 (0.432 ±0.051)
	85	2307	0.226 ±0.004 (5.740 ±0.102)	0.075 ±0.003 (1.905 ±0.076)	0.018 ±0.004 (0.457 ±0.102)	0.016 ± 0.002 (0.406 ±0.051)
	89	2512	0.253 ±0.004 (6.426 ±0.102)	0.124 ±0.003 (3.150 ±0.076)	0.030 ±0.005 (0.762 ±0.127)	0.017 ±0.002 (0.432 ±0.051)
	68	3939	0.390 ±0.006 (9.906 ±0.152)	0.390 ±0.005 (9.906 ±0.127)	0.030 ±0.005 (0.762 ±0.127)	0.040 ± 0.002 (1.016 ±0.051)
	30	5024	0.497 ±0.006 (12.624 ±0.152)	0.246 ±0.005 (6.248 ±0.127)	0.030 ±0.005 (0.762 ±0.127)	0.053 ±0.002 (1.346 ±0.051)
	28	6632	0.669 ±0.006 (16.993 ±0.152)	0.332 ±0.005 (8.443 ±0.127)	0.030 ±0.005 (0.762 ±0.127)	0.063 ±0.002 (1.600 ±0.051)
	26	6645	0.669 ±0.006 (16.993 ±0.152)	0.499 ±0.005 (12.675 ±0.127)	0.030 ±0.005 (0.762 ±0.127)	0.063 ±0.002 (1.600 ±0.051)

¹ Solder may add up to an additional 0.004" in thickness.

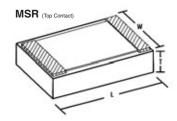
Mini MSR Series Resistors

Style	Type	Case Size	Length Inches (mm)	Width Inches (mm)	Thickness ¹ Inches (mm)	Pad Width Inches (mm)
MSR	96	0201	0.022 ±0.002 (0.559 ±0.051)	0.012 ± 0.002 (0.305 ±0.051)	0.007 ±0.002 (0.178 ±0.051)	0.005 ± 0.002 (0.127 ±0.051)
	84	0202	0.022 ±0.002 (0.559 ±0.051)	0.020 ±0.002 (0.508 ±0.051)	0.007 ± 0.002 (0.178 ±0.051)	0.005 ± 0.002 (0.127 ±0.051)
	66	0203	0.025 ±0.002 (0.635 ±0.051)	0.030 ±0.002 (0.762 ±0.051)	0.012 ±0.003 (0.305 ±0.076)	0.006 ±0.002 (0.152 ±0.051)
	98	0302	0.030 ±0.002 (0.762 ±0.051)	0.020 ±0.002 (0.508 ±0.051)	0.012 ±0.003 (0.305 ±0.076)	0.006 ±0.002 (0.152 ±0.051)
	91	0303	0.028 ±0.002 (0.711 ±0.051)	0.030 ±0.002 (0.762 ±0.051)	0.012 ±0.003 (0.305 ±0.076)	0.006 ±0.002 (0.152 ±0.051)
	10	0404	0.035 ±0.002 (0.889 ±0.051)	0.035 ±0.002 (0.889 ±0.051)	0.012 ±0.003 (0.305 ±0.076)	0.009 ±0.002 (0.229 ±0.051)

¹ Solder may add up to an additional 0.004" in thickness.

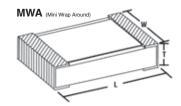
MSR Series Resistors

Style	Type	Case Size	Length Inches (mm)	Width Inches (mm)	Thickness ¹ Inches (mm)	Pad Width Inches (mm)
MSR	20	0402	0.040 ±0.002 (1.016 ±0.051)	0.020 ±0.002 (0.508 ±0.051)	0.013 ± 0.003 (0.330 ±0.076)	0.009 ± 0.002 (0.229 ±0.051)
	81	0502	0.048 ±0.002 (1.219 ±0 .051)	0.023 ±0.002 (0.584 ±0.051)	0.013 ± 0.003 (0.330 ±0.076)	0.010 ± 0.002 (0.254 ±0.051)
	56	0503	0.045 ±0.002 (1.143 ±0.051)	0.030 ±0.002 (0.762 ±0.051)	0.013 ± 0.003 (0.330 ±0.076)	0.011 ±0.002 (0.279 ±0.051)
	19	0504	0.050 ±0.002 (1.270 ±0.051)	0.040 ±0.002 (1.016 ±0.051)	0.013 ± 0.003 (0.330 ±0.076)	0.011 ±0.002 (0.279 ±0.051)
	82	0505	0.048 ±0.002 (1.219 ±0.051)	0.048 ±0.002 (1.219 ±0.051)	0.013 ± 0.003 (0.330 ±0.076)	0.009 ±0.002 (0.229 ±0.051)
	93	0603	0.060 ±0.002 (1.524 ±0.051)	0.030 ±0.002 (0.762 ±0.051)	0.013 ± 0.003 (0.330 ±0.076)	0.010 ±0.002 (0.254 ±0.051)
	61	0604	0.060 ±0.002 (1.524 ±0.051)	0.040 ±0.002 (1.016 ±0.051)	0.018 ±0.004 (0.457 ±0.076)	0.013 ±0.002 (0.330 ±0.051)


¹ Solder may add up to an additional 0.004" in thickness.


MSR Series Resistors

Style	Type	Case Size	Length Inches (mm)	Width Inches (mm)	Thickness ¹ Inches (mm)	Pad Width Inches (mm)
MSR	86	0805	0.075 ±0.002 (1.905 ±0.051)	0.048 ±0.002 (1.219 ±0.051)	0.018 ±0.003 (0.457 ±0.076)	0.013 ± 0.002 (0.330 ±0.051)
	5	1002	0.100 ±0.002 (2.540 ±0.051)	0.025 ± 0.002 (0.635 ±0.051)	0.013 ± 0.003 (0.330 ±0.076)	0.016 ± 0.002 (0.406 ±0.051)
	83	1005	0.098 ±0.002 (2.489 ±0.051)	0.048 ±0.002 (1.219 ±0.051)	0.018 ±0.003 (0.457 ±0.076)	0.013 ± 0.002 (0.330 ±0.051)
	90	1010	0.098 ±0.002 (2.489 ±0.051)	0.098 ±0.002 (2.489 ±0.051)	0.018 ± 0.003 (0.457 ± 0.076)	0.012 ± 0.002 (0.305 ±0.051)
	87	1206	0.121 ±0.002 (3.073 ±0.051)	0.061 ±0.002 (1.549 ±0.051)	0.018 ±0.003 (0.457 ±0.076)	0.015 ±0.002 (0.381 ±0.051)
	94	1210	0.120 ±0.002 (3.048 ±0.051)	0.098 ±0.002 (2.489 ±0.051)	0.018 ± 0.003 (0.457 ± 0.076)	0.015 ±0.002 (0.381 ±0.051)
	97	1218	0.115 ±0.002 (2.921 ±0.051)	0.179 ±0.002 (4.547 ±0.051)	0.030 ±0.005 (0.762 ±0.127)	0.022 ± 0.002 (0.559 ±0.051)
	80	1505	0.150 ±0.002 (3.810 ±0.051)	0.048 ±0.002 (1.219 ±0.051)	0.018 ± 0.003 (0.457 ± 0.076)	0.012 ± 0.002 (0.305 ±0.051)
	88	2010	0.204 ±0.002 (5.182 ±0.051)	0.096 ±0.002 (2.438 ±0.051)	0.018 ±0.003 (0.457 ±0.076)	0.017 ± 0.002 (0.432 ±0.051)
	85	2307	0.223 ±0.002 (5.664 ±0.051)	0.073 ±0.002 (1.854 ±0.051)	0.018 ± 0.003 (0.457 ± 0.076)	0.016 ± 0.002 (0.406 ±0.051)
	89	2512	0.250 ±0.002 (6.350 ±0.051)	0.122 ±0.002 (3.099 ±0.051)	0.027 ± 0.003 (0.686 ± 0.076)	0.017 ± 0.002 (0.432 ±0.051)
	68	3939	0.386 ±0.002 (9.804 ±0.051)	0.386 ± 0.002 (9.804 ± 0.051)	0.030 ± 0.005 (0.762 ±0.127)	0.040 ± 0.002 (1.016 ±0.051)
	30	5024	0.494 ±0.002 (12.548 ±0.051)	0.243 ±0.002 (6.172 ±0.051)	0.030 ±0.005 (0.762 ±0.127)	0.053 ± 0.002 (1.346 ±0.051)
	28	6632	0.666 ± 0.002 (16.916 ± 0.051)	0.328 ±0.002 (8.331 ±0.051)	0.030 ± 0.005 (0.762 ±0.127)	0.063 ± 0.002 (1.600 ±0.051)
	26	6645	0.666 ±0.002 (16.916 ±0.051)	0.495 ±0.002 (12.573 ±0.051)	0.030 ±0.005 (0.762 ±0.127)	0.063 ± 0.002 (01.600 ±0.051)


¹ Solder may add up to an additional 0.004" in thickness.

QPL PART NUMBER DESIGNATION

EXAMPLE: M55342M01W10E0S

Per MIL-PRF-55342, TCR \pm 300ppm, 0502 case size, Top Contact, Gold base metal, $10 \mathrm{K}\Omega$, 1% tol., "S" Life Failure Rate

MIL-PRF-55342: M55342

D = For /07 series only
M = all other series
Military Spec. Indicating

MIL=PRF-55342

Characteristic: M

 $K = \pm 100ppm$

 $M = \pm 300ppm$

70 °C Max. ambient temperature at rated wattage

QPL Size: 01 See Tables on pages 16 & 17

Termination: W

Base Metal

W = Gold Top Contact

T = Platinum Gold Top Contact

D = Palladium Silver Top Contact

B = Nickel Barrier,

Solder Coated Wrap Around

G = Nickel Barrier,

Gold Plated Wrap Around
C = Palladium Silver Wrap Around

U = Platinum Gold Wrap Around

Value and: 10E0 Tollerance

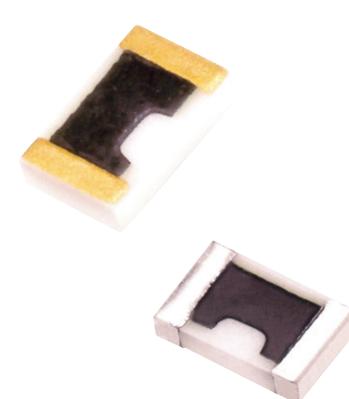
10KΩ, 1%

See pgs. 14 & 15 for tables III & IV Of MIL-PRF-55342

Life Failure: S

C = Non-ER

Product Level

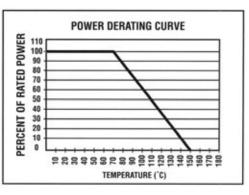

M = 1.0% / 1000 Hrs. P = 0.1% / 1000 Hrs.R = 0.01% / 1999 Hrs.

S = 0.001% / 1000 Hrs.

T = Space Level

Packaged in chip trays if not specified.

QPL thick film resistors are printed and fired on 96% Alumina. All case sizes are offered to fit a variety of Hi-Rel hybrid microelectronic applications. Advanced processing techniques and, Hi-Rel Construction assure optimum performance where TCR, VCR and operating power are critical factors. All styles meet and exceed the qualification requirements of MIL-PRF-55342.



QPL STYLE Case Size	TERMINATION	CHAR.	RESIS MIN.	TANCE MAX.	TOLERANCE %	POWER (WATTS)	VOLTAGE (VOLTS DC)	MSI SIMILAR STYLE/ TYPE
RM0502	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.050	40	MSR81 WA81
RM0505	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.125	40	MSR82 WA82
RM1005	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.200	75	MSR83 WA83
RM1505	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.150	125	MSR80 WA80
RM2208	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.225	175	MSR85 WA85
RM0705	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.150	50	MSR86 WA86
RM1206	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.250	100	MSR92 WA87
RM2010	W, T, D B, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.8001	150	MSR88 WA88
RM2512	W, T, D B, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	1.000¹	200	MSR89 WA89
RM1010	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.500¹	75	MSR90 WA90
RM0402	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.050	30	MSR20 WA20
RM0603	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.100	50	MSR93 WA93
RM0302	W, T, D B, G, C, U	K, L, M	1 Ω	22 MΩ	0.1, 0.25, 0.5, 1, 2, 5, 10	0.040	15	MSR 98 MWA98
	RM0502 RM0505 RM1005 RM1505 RM2208 RM0705 RM1206 RM2010 RM2512 RM1010 RM0402 RM0603	Case Size TERMINATION RM0502 W, T, D B, G, C, U RM0505 W, T, D B, G, C, U RM1005 W, T, D B, G, C, U RM1505 W, T, D B, G, C, U RM2208 W, T, D B, G, C, U RM0705 W, T, D B, G, C, U RM1206 W, T, D B, G, C, U RM2010 W, T, D B, C, U RM1010 W, T, D B, C, U RM1010 W, T, D B, G, C, U RM0402 W, T, D B, G, C, U RM0603 W, T, D B, G, C, U RM0302 W, T, D	Case Size TERMINATION CHAR. RM0502 W, T, D B, G, C, U K, L, M RM0505 W, T, D B, G, C, U K, L, M RM1005 W, T, D B, G, C, U K, L, M RM1505 W, T, D B, G, C, U K, L, M RM2208 W, T, D B, G, C, U K, L, M RM0705 W, T, D B, G, C, U K, L, M RM1206 W, T, D B, G, C, U K, L, M RM2010 W, T, D B, C, U K, L, M RM2512 W, T, D B, C, U K, L, M RM1010 W, T, D B, G, C, U K, L, M RM0402 W, T, D B, G, C, U K, L, M RM0603 W, T, D B, G, C, U K, L, M	QPL STYLE Case Size TERMINATION CHAR. MIN. RM0502 W, T, D B, G, C, U K, L, M 1 Ω RM0505 W, T, D B, G, C, U K, L, M 1 Ω RM1005 W, T, D B, G, C, U K, L, M 1 Ω RM1505 W, T, D B, G, C, U K, L, M 1 Ω RM2208 W, T, D B, G, C, U K, L, M 1 Ω RM0705 W, T, D B, G, C, U K, L, M 1 Ω RM1206 W, T, D B, G, C, U K, L, M 1 Ω RM2010 W, T, D B, C, U K, L, M 1 Ω RM2512 W, T, D B, C, U K, L, M 1 Ω RM1010 W, T, D B, G, C, U K, L, M 1 Ω RM0402 W, T, D B, G, C, U K, L, M 1 Ω RM0603 W, T, D B, G, C, U K, L, M 1 Ω RM0603 W, T, D B, G, C, U K, L, M 1 Ω	Case Size TERMINATION CHAR. MIN. MAX. RM0502 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ RM0505 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ RM1005 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ RM1505 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ RM2208 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ RM0705 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ RM1206 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ RM2010 W, T, D B, C, U K, L, M 1 Ω 22 MΩ RM2512 W, T, D B, C, U K, L, M 1 Ω 22 MΩ RM1010 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ RM0402 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ RM0603 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ RM0603 W, T, D B, G, C, U K, L, M 1 Ω 22 M	QPL STYLE Case Size TERMINATION CHAR. MIN. MAX. TOLERANCE % RM0502 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 RM0505 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 RM1005 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 RM1505 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 RM2208 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 RM0705 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 RM1206 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 RM2512 W, T, D B, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 RM1010 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 RM0402 W, T, D B, G, C, U K, L, M 1 Ω 2	QPL STYLE Case Size TERMINATION CHAR. MIN. MAX. TOLERANCE (WATTS) RM0502 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.050 RM0505 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.125 RM1005 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.200 RM1505 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.150 RM2208 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.225 RM0705 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.150 RM1206 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.250 RM2010 W, T, D B, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.8001 RM1010 W, T, D B, G, C, U K, L, M 1 Ω 22	QPL STYLE Case Size TERMINATION CHAR. MIN. MAX. TOLERANCE (WATTS) POWER (VOLTS DE) RM0502 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.050 40 RM0505 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.125 40 RM1005 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.200 75 RM1505 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.150 125 RM2208 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.225 175 RM0705 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.150 50 RM1206 W, T, D B, G, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2, 5, 10 0.250 100 RM2512 W, T, D B, C, U K, L, M 1 Ω 22 MΩ 0.1, 0.25, 0.5, 1, 2

^{1.} Mounted to a ceramic board.

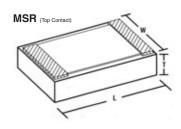
Electrical Performance Characteristics					
MIL-PRF-55342	MIL-PRF-55342 Requiremen	t MSI Typical			
Short Term Overload	±0.25%	±0.03%			
High Temperature Exposure	±0.50%	±0.05%			
Thermal Shock	±0.50%	±0.07%			
Low Temperature Operation	±0.25%	±0.05%			
Resistance to Bonding Expopsure / Solde	ring Heat ±0.25%	±0.09%			
Moisture Resistance	±0.50%	±0.06%			
Stability (Life 70°C 2,000Hrs)	±0.50%	±0.04%			
Stability (Life 70°C 10,000Hrs)	±2.00%	±0.07%			

_ Power rating at 70°C derated linearly to 0% power at 150°C ($P=E^2/R$)

MIL-PRF-55342

TABLE III. Designator or resistance values for resistance tolerances

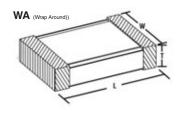
	Designator for 1 percent tolerance	Resistance Ohms			
Ohms	1D00 to 9D76 inclusive	1.00	to	9.76	inclusive
	10D0 to 97D6 inclusive	10.0	to	97.6	inclusive
	100D to 976D inclusive	100	to	976	inclusive
Kohms	1E00 to 9E76 inclusive	1,000	to	9,760	inclusive
	10E0 to 97E6 inclusive	10,000	to	97,600	Inclusive
	100E to 976E inclusive	100,000	to	976,000	inclusive
Mohms	1F00 to 9F76 inclusive 10F0	1,000,000 10,000,000	to	9,760,000	inclusive
	Designator for 2 percent tolerance	Resistance Ohms			
Ohms	1G00 to 9G10 inclusive	1.00	to	9.10	inclusive
	10G0 to 91G0 inclusive	10.0	to	91.0	inclusive
	100G to 910G inclusive	100	to	910	inclusive
Kohms	1H00 to 9H10 inclusive	1,000	to	9,100	inclusive
	10H0 to 91H0 inclusive	10,000	to	91,000	inclusive
	100H to 910H inclusive	100,000	to	910,000	inclusive
Mohms	1T00 to 9T10 inclusive 10T0	1,000,000 10,000,000	to	9,100,000	inclusive
	Designator for 5 percent tolerance	Resistance Ohms			
Ohms	1J00 to 9J10 inclusive	1.00	to	9.10	inclusive
	10J0 to 91J0 inclusive	10.0	to	91.0	inclusive
	100J to 910J inclusive	100	to	910	inclusive
Kohms	1K00 to 9K10 inclusive	1,000	to	9,100	inclusive
	10K0 to 91K0 inclusive	10,000	to	91,000	inclusive
	100K to 910K inclusive	100,000	to	910,000	inclusive
Mohms	1L00 to 9L10 inclusive 10L0	1,000,000 10,000,000	to	9,100,000	inclusive
	Designator for 10 percent tolerance	Resistance Ohms			
Ohms	1M00 to 8M20 inclusive	1.00	to	8.20	inclusive
	10M0 to 82M0 inclusive	10.0	to	82.0	inclusive
	100M to 820M inclusive	100	to	820	inclusive
Kohms	1N00 to 8N20 inclusive	1,000	to	8,200	inclusive
	10N0 to 82N0 inclusive	10,000	to	82,000	inclusive
	100N to 820N inclusive	100,000	to	820,000	inclusive
Mohms	1P00 to 8P20 inclusive 10P0	1,000,000 10,000,000	to	8,200,000	inclusive



MIL-PRF-55342

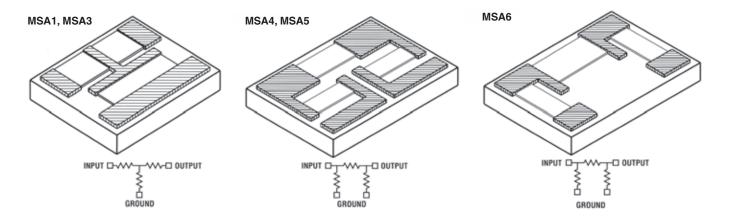
TABLE IV. Standard resistance values for the 10 to 100 decade

1%	2% & 5%	10%	1%	2% & 5%	10%	1%	2% & 5%	10%
10.00	10.00	10.00	21.50	00.00	22.00	46.40	47.00	47.00
10.20			22.10	22.00	22.00	47.50	47.00	47.00
10.50			22.60			48.70		
10.70			23.20			49.90	51.00	E1 00
11.00	11.00		23.70	04.00		51.10	51.00	51.00
11.30			24.30	24.00		52.30		
11.50			24.90			53.60		
11.80	12.00	12.00	25.50			54.90	56.00	56.00
12.10	12.00	12.00	26.10			56.20	30.00	30.00
12.40			26.70	27.00	27.00	57.60		
12.70			27.40	21.00	21.00	59.00		
13.00	13.00		28.00			60.40		
13.30			28.70			61.90	62.00	
13.70			29.40	20.00		63.40	02.00	
14.00			30.10	30.00		64.90		
14.30			30.90			66.50		
14.70			31.60			68.10	68.00	68.00
15.00	15.00	15.00	32.40	33.00	33.00	69.80	00.00	00.00
15.40			33.20	00.00	00.00	71.50		
15.80	16.00		34.00			73.20		
16.20	10.00		34.80			75.00	75.00	75.00
16.50			35.70	36.00		76.80		
16.90			36.50	00.00		78.70		
17.40			37.40			80.60	82.00	82.00
17.80	18.00	18.00	38.30	39.00	39.00	82.50	02.00	02.00
18.20	. 0.00	. 5.55	39.20	00.00	00.00	84.50		
18.70			40.20			86.60		
19.10			41.20			88.70		
19.60			42.20	43.00		90.90	91.00	
20.00	20.00		43.20	.0.00		93.10	2	
20.50			44.20			95.30		
21.00			45.30			97.60		



QPL SIZE	QPL STYLE Case Size	Length Inches (mm)	Width Inches (mm)	Pad Width Inches (mm)
01	RM0502	0.050 ±0.005 (1.270 ±0.127)	0.025 ±0.005 (0.635 ±0.127)	0.010 ±0.005 (0.254 ±0.127)
02	RM0505	0.050 ±0.005 (1.270 ±0.127)	0.050 ±0.005 (1.270 ±0.127)	0.010 ±0.005 (0.254 ±0.127)
03	RM1005	0.100 ±0.005 (2.540 ±0.127)	0.050 ±0.005 (1.270 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
04	RM1505	0.150 ±0.005 (3.810 ±0.127)	0.050 ±0.005 (1.270 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
05	RM2208	0.225 ±0.005 (5.715 ±0.127)	0.075 ±0.005 (1.905 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
06	RM0705	0.075 ±0.005 (1.905 ±0.127)	0.050 ±0.005 (1.270 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
07	RM1206	0.126 ±0.005 (3.200 ±0.127)	0.063 ±0.005 (1.600 ±0.127)	0.018 ±0.007 (0.457 ±0.178)
08	RM2010	0.206 ±0.005 (5.232 ±0.127)	0.098 ±0.005 (2.489 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
09	RM2512	0.248 ±0.005 (6.299 ±0.127)	0.124 ±0.005 (3.150 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
10	RM1010	0.100 ±0.005 (2.540 ±0.127)	0.100 ±0.005 (2.540 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
11	RM0402	0.041 ±0.006 (1.041 ±0.152)	0.022 ±0.005 (0.559 ±0.127)	0.010 ±0.005 (0.254 ±0.127)
12	RM0603	0.060 ±0.005 (1.524 ±0.127)	0.032 ±0.005 (0.813 ±0.127)	0.010 ±0.005 (0.254 ±0.127)
13	RM0302	0.032 ±0.004 (0.813 ±0.102)	0.022 ±0.005 (0.559 ±0.127)	0.008 ±0.005 (0.203 ±0.127)

Max Thickness 0.033 in. (0838mm)


QPL SIZE	QPL STYLE Case Size	Length Inches (mm)	Width Inches (mm)	Pad Width Inches (mm)
01	RM0502	0.055 ±0.006 (1.397 ±0.152)	0.025 ±0.005 (0.635 ±0.127)	0.015 ±0.005 ¹ (0.381 ±0.127)
02	RM0505	0.055 ±0.006 (1.397 ±0.152)	0.050 ±0.005 (1.270 ±0.127)	0.015 ±0.005 ¹ (0.381 ±0.127)
03	RM1005	0.105 ±0.007 (2.667 ±0.178)	0.050 ±0.005 (1.270 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
04	RM1505	0.155 ±0.007 (3.937 ±0.178)	0.050 ±0.005 (1.270 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
05	RM2208	0.230 ±0.007 (5.842 ±0.178)	0.075 ±0.005 (1.905 ±0.127)	0.020 ±0.005 (0.508 ±0.127)
06	RM0705	0.080 ±0.006 (2.032 ±0.152)	0.050 ±0.005 (1.270 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
07	RM1206	0.126 ±0.008 (3.200 ±0.203)	0.063 ± 0.005 (1.600 ±0.127)	0.018 ±0.007 ¹ (0.457 ±0.178)
08	RM2010	0.209 ±0.009 (5.309 ±0.229)	0.098 ±0.005 (2.489 ±0.127)	0.020 ± 0.005 (0.508 ± 0.127)
09	RM2512	0.256 ±0.012 (6.502 ±0.305)	0.124 ±0.005 (3.150 ±0.127)	0.020 ±0.005 (0.508 ±0.127)
10	RM1010	0.105 ±0.007 (2.667 ±0.178)	0.100 ±0.005 (2.540 ±0.127)	0.015 ±0.005 (0.381 ±0.127)
11	RM0402	0.042 ±0.008 (1.067 ±0.203)	0.022 ±0.005 (0.559 ±0.127)	0.010 ±0.005 (0.254 ±0.127)
12	RM0603	0.064 ±0.006 (1.626 ±0.152)	0.032 ±0.005 (0.813 ±0.127)	0.015 ±0.005 ¹ (0.381 ±0.127)
13	RM0302	0.034 ±0.004 (0.864±0.102)	0.022 ±0.005 (0.559 ±0.127)	0.008 ±0.005 ¹ (0.203 ±0.127)

Max Thickness 0.033 in. (0838mm)

^{1.} Dimensions are for back terminations only.

Thick film Chip Attenuators

Wire and ribbon bondable and Flipchip thick film chip attenuators, printed and fired on 96% alumina. Provides attenuation accuracy for frequencies through 10 Ghz. Double layer terminations provide additional bonding surface. Abrasive trimming ensures optimum resistor stability. Diamond sawed for dimensional uniformity and accuracy. Advanced processing techniques, and Hi-Rel construction assure optimum performance.

PART NUMBER DESIGNATION

EXAMPLE: MSA3G-01dB-BU

MSA-3 Series, Gold Termination, -1dB, Back Metal, Untinned

Style: MSA	Mini-Systems Attenuator
------------	-------------------------

Type: 3 1, 3, 4, 5, 6

Termination: G Material

G = Gold for wire bonding (MSR only)
PG = Platinum Gold

Base Metal PS = Palladium Silver

dB Value: 01dB

Metal Options: B B = Bac

B = Back Metal
Blank = No Metal Options

Options: U

U = Untinned No Solder

S = Soldered

Packaged in chip trays if not specified

Thick film Chip Attenuators

MSA1, MSA3

Size MSA1 = 0.320" $\times 0.240$ " $\times 0.030$ " (± 0.005 ")

MSA3 = 0.155" $\times 0.125$ " $\times 0.030$ " (±0.005")

Substrate 96% Alumina

Bond Pads Wire Bondable, Ribbon Bondable, or Solderable

Attenuation -1dB Through -20dB

Ranges Consult Sales For 0.5dB Steps

Attenuation ±0.5dB

Accuracy

Frequency DC Through 10 GHz

Range

Impedance 50Ω

Vswr 1.5:1 Max. **Power** MSA1 = 1W

Rating MSA3 = 500mW MSA6

Size MSA6 = 0.090" $\times 0.050$ " $\times 0.011$ " (±0.002")

Substrate 96% Alumina

Bond Pads Wire Bondable, Ribbon Bondable,

or Solderable

Attenuation -1dB Through -20dB

Ranges Consult Sales For 0.5dB Steps

Attenuation ±0.5dB

Accuracy

Frequency DC Through 10 GHz

Range

Impedance 50Ω

Vswr 1.5:1 Max.

Power MSA6 = 125mWHigher power ratings available Rating

Other configurations and impedances are available

MSA4, MSA5

Size MSA4 = 0.155" $\times 0.125$ " $\times 0.030$ " (±0.005")

MSA5 = 0.320" $\times 0.240$ " $\times 0.030$ " (± 0.005 ")

Substrate 96% Alumina

Bond Pads Wire Bondable, Ribbon Bondable, or Solderable

Attenuation -1dB Through -20dB

Ranges Consult Sales For 0.5dB Steps

Attenuation ±0.5dB

Accuracy

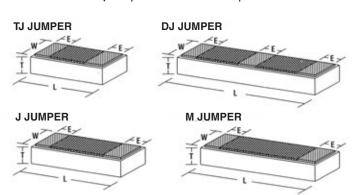
Frequency DC Through 10 GHz

Range

Impedance 50Ω

Vswr 1.5:1 Max.

Power MSA4 = 500mW


Rating MSA5 = 1W

MADE IN AMERICA 8022 RFV F 19

Thick film Jumpers

These glass insulated, "O-Ohm", gold jumpers are Ideally suited for providing interconnections and wiring crossovers in the fabrication of "chip and wire" type microelectronic modules. These jumpers allow for prototype and small quantity circuitry layouts without the need for special conductor patterns.

Top Contact Series

Supbtrate: 96% Alumina

Other substrate materials available upon request

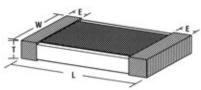
Metallization: Gold; 11 Microns Nominal; Solder Optional

Insulation: Glass. 10 Microns Nominal

Maximum: 1.5 Amps

Current

PART NUMBER DESIGNATION


EXAMPLE: TJ-JUMPER

0.045" X 0.017" X 0.011", Jumper, 0.020Ω Max Resistance

	Style: J						
	JUMPER						
Style	Length Inches	Width Inches	Thick Inches	Pad Width Inches	Tolerance Inches	Resistance Max	
TJ	0.045	0.017	0.011	0.010	±0.002	0.020 Ω	
J	0.065	0.017	0.011	0.010	±0.002	0.025 Ω	
MJ	0.100	0.017	0.011	0.015	±0.002	0.040 Ω	
DJ	0.130	0.017	0.011	0.015 ¹	±0.002	$0.050~\Omega$	

Custom sizes available 1. Center pad .010"

WRAP AROUND JUMPER

Wrap Around Series

Substrate: 96% Alumina

Other substrate materials available upon request

Metallization: Palladium Silver, Platinum Gold.

Untinned or solder over nickel barrier optinal.

Insulation: Glass **Maximum:** 1.5 Amps

Current

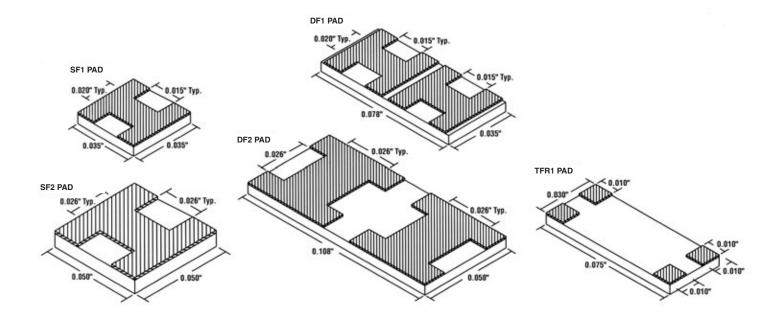
Maximum: 0.100Ω Values to 0.01Ω available. Contact sales.

Resistance Values dependant on mounting method

Custom sizes available

PART NUMBER DESIGNATION

EXAMPLE: WAJ81PG-NS62TR


0.055" x 0.025" x 0.017", Pt Gold Term., Ni Barrier, Sn62 Solder, Tape & Reel

Style:	WAJ	WAJ = Wrap Around Jumper Please reference WA & MSR Series Prefix G=RoHS
Type:	81	See list below
Termination: Material Base Metal	PG	PG = Platinum Gold PS = Palladium Silver
Metal/Solder: NS62 Options		NS62 = Nickel, Sn62 NU = Nickel, Gold Plate S62 = Sn62 S305=Sn305 U = Untinned No Solder
Option:	TR	X = Special requirements Available from sales agent TR = Tape & Reel Package in bulk if not specified

All MSR and WA series resistors are available as jumpers

Mounting Pads and Kits

Gold Mounting Pads

Substrate: 96% Alumina
Tolerance: ±0.003"
On all dimensions

Custom configurations available

PART NUMBER DESIGNATION

EXAMPLE: DF1 PAD 0.078 x 0.035 Mounting Pad

Style: DF DF = Dual SF = Single

TFR Type 1 only

Type: 1 1 or 2

Option: X X = Special requirements

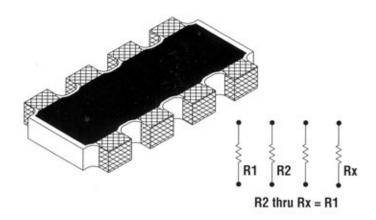
Available from sales agent
Chip Trays optional
Packaged in bulk if no specified

Jumper & Mounting Pad Kits

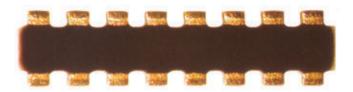
Jumper Kit: DJ Jumper = 70 pieces
Contents J Jumper = 100 pieces

MJ Jumper = 100 pieces
TJ Jumper = 100 pieces

Combo Kit: DJ Jumper = 20 pieces


Contents

J Jumper = 35 pieces
MJ Jumper = 35 pieces
TJ Jumper = 35 pieces
SF1 Pad = 70 Pieces
DF1 Pad = 35 Pieces
DF2 Pad = 35 Pieces


TFR1 Pad = 35 Pieces

Surface Mount Resistor Networks

SMR Series of precision resistor networks for fine pitch, surface mount applications. These networks feature a lead pitch of (0.031") and are available in 4 to 16 pin-out styles. The standard value range is 2 Ω to 10 M Ω , isolated resistors. Custom configurations are available. Advanced processing techniques, including abrasively trimmed resistors, ensures maximum performance and stability.

PART NUMBER DESIGNATION

EXAMPLE: SMR8S-1001J-NS62TR

SMR Series, (8) 1 kΩ Resistors, ±5% Abs. Tol., Nickel, Sn62 Solder Tape & Reel

> Style: SMR Surface Mount Resistor

> > Type: 8 4, 6, 8, 10, 12, 14, 16

Termination: S Material

Base Metal

Value: 1001 1 ΚΩ

Resistance Value

Four digits (xxxx) with provisions for five digits (xxxxx) if necessary. The first three digits represent significant figures. The last digit represents the number of zeros to follow. When fractional values of an ohm are required, the letter "R" is used as a

decimal point.

Tolerance: J

J = 5%K = 10%

M = 20%

Termination: SN62

All come with Nickel

NS60 = Nickel Barrier, Sn60

NS62 = Nickel Barrier, Sn62 NS63 = Nickel Barrier, Sn63

NS96 = Nickel barrier, Sn96 NI50 = Nickel Barrier, In50 NI75 = Nickel Barrier, In75

NU = Nickel, Gold Plate

Options: TR

TR = Tape and Reel (Heat seal std) Pressure seal & Paper tape available Packaged in chip trays if not specified

X = Special Requirements Code

Surface Mount Resistor Networks

Style	Type	Number of Resistors	Number of Pin-outs	Length Inches (mm)	Width Inches (mm)	Thickness Inches (mm)
SMR	4	2	4	0.064 ±0.005 (1.626 ±0.127)	0.063 ±0.005 (1.600 ±0.127)	0.020 ± 0.005 (0.508 ±0.127)
	6	3	6	0.094 ±0.005 (2.388 ±0.127)	0.063 ±0.005 (1.600 ±0.127)	0.020 ± 0.005 (1.508 ±0.127)
	8	4	8	0.126 ±0.005 (3.200 ±0.127)	0.063 ±0.005 (1.600 ±0.127)	0.020 ±0.005 (1.508 ±0.127)
	10	5	10	0.157 ±0.005 (3.988 ±0.127)	0.063 ±0.005 (1.600 ±0.127)	0.020 ±0.005 (1.508 ±0.127)
	12	6	12	0.189 ±0.005 (4.801 ±0.127)	0.063 ±0.005 (1.600 ±0.127)	0.020 ±0.005 (1.508 ±0.127)
	14	7	14	0.220 ±0.005 (5.588 ±0.127)	0.063 ±0.005 (1.600 ±0.127)	0.020 ±0.005 (1.508 ±0.127)
	16	8	16	0.252 ±0.005 (6.401 ±0.127)	0.063 ±0.005 (1.600 ±0.127)	0.020 ±0.005 (1.508 ±0.127)

Mechanical Data

Substrate: 96% Alumina

Optional marking and custom configurations available

Electrical Performance Characteristics

Test per MIL-PRF-55342	MSI Typical
Short Term Overload	±0.03%
High Temperature Exposure	±0.05%
Thermal Shock	±0.07%
Low Temperature Operation	±0.05%
Resistance to Bonding Exposure / Soldering Heat	±0.09%
Moisture Resistance	±0.06%
Stability (Life 70°C 2,000Hrs)	±0.04%
Stability (Life 70°C 10,000Hrs)	±0.07%

Electrical Data

Power: Rating	0.063 Watts per resister $(P = E^2/R)$		
Voltage: Rating	40 Volts per Resistor		
TCR:	2Ω to $< 5 \Omega$:	±300ppm/°C	
	5 Ω to < 100 K Ω :	±150ppm/°C	
	100 KΩ to < 1 MΩ:	±200ppm/°C	
	1 M Ω to < 10 M Ω	±300ppm/°C	

MADE IN AMERICA 8022 REV E

MSIRP Reliability Program

The reliability assurance program will provide customers with real time data on similar resistor chip products. These products will be tested on a continuous basis and data will be accompanied by a certificate of conformance. The data will be displayed in a graphical representation and plotted against military standard criteria.

Samples Being Selected

- Samples are selected at random
- Samples are MSR or WA series parts styles RM0502,
- RM0505, RM1005, RM1505, RM2208, RM0705, RM1206,
- RM2010, RM2512, RM1010, RM0402, RM0603
- Substrate material is 96% Alumina (Al₂0₂)
- Data is also taken from parts that are currently
- being tested and meet the previous requirements

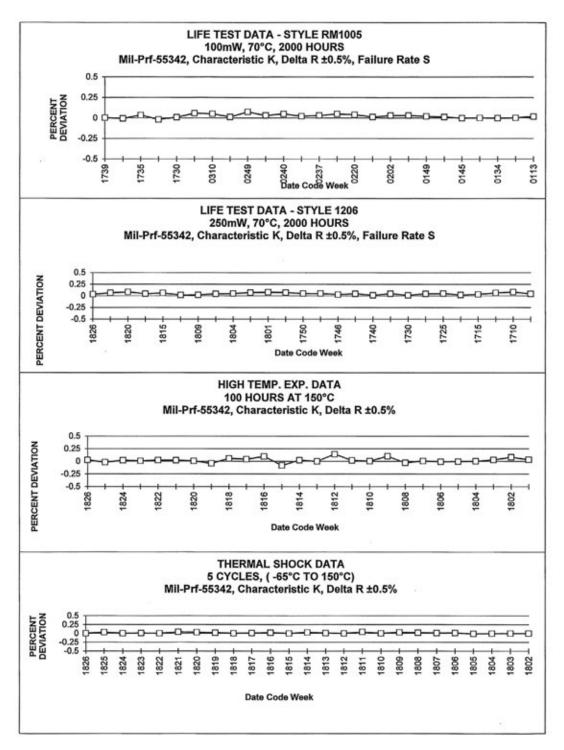
Applicable Military Standards

- MIL-PRF-55342, Characteristic "K"
- ♦ MIL-STD-202, Method 107 € 108

Tests Being Performed

- Life Test-style RM1005
 2000 Hours +72/-24 Hours@70°C ±5°C, 100mW
 ΔR Requirement ±0.5%
- Life Test-style RM1206
 2000 Hours +72/-24 Hours@70°C ±5°C, 250mW
 ΔR Requirement ±0.5%
- Thermal Shock Test
 5 Cycles 65°C +0/-10°C To 150°C +10/-0°C ∆R Requirement ±0.5%
- High Temperature Exposure
 100 Hours ±4 Hours At 150°C ±5°C
 ΔR Requirement ±0.5%

Data


- Data will be supplied with a certificate of conformance for orders that do not require additional quality conformance testing.
- Charts are updated and are available on the web page.

Customer		Date				
_						
CONFIDENCE OF THE CONFIDENCE O	RM TO THE REGU. MINI-SYSTEMS CUTS LIST (QPL) I SALS AND FINISH MENT HAS BEEN ITIONS HAS BEEN IOL. THE ITEMS THOM / TEST DATA AVAILABLE FOR I	T ALL ITEMS FLYRNSHED RES INTERMENTS OF PURICHASE OF INC. IS A CURRENITY APPRINCE OF MIL-PRINCES COMPLY TO ALL UTILIZED, I HERBERY CERTIFY I VERFIED TO PERFORM ITS WERE MANUFACTURED IN IT IA RECORDS TRACEABLE TO REVIEW BY BUYER AND / OR E NO. (CADE) 56316	RDER, SPECIFIC OVED MANUFAC MS WERE INSPE , REQUIREMENT / THAT SOFTWA REQUIRED FUR HE UNITED STAT) THIS PURCHAS	ATIONS, DR TURER LIST ICTED / TES IS. IF AUTOI RE USED IN ICTIONS ANI IES OF AME IES ORDER A	AIVINGS, AND CI ED ON THE QUA TED TO ASSURE MATED INSPECTI INSPECTION / TE INSPECTION / TE INS	ONTRACT LIFIED THE ION / TEST EST FIGURATIK STEMS INC WILL BE
	SIZE A	CODE ID. NO.	10326 DI	WG. NO.	3408	

Front page of a typical Certificate of Conformance, Signed by the Q.A. Manager Custom layouts available with alternate information available by request

MSIRP Reliablility Program

Back page of a Certificate of Conformance, containing data on Thick Film resistor products.

Data is continuously updated, and referenced by date code, so that the most recent point is placed at the beginning of the graph

For more information contact the MSI Thick Film Quality Assurance Department

Thick Film Process Capabilities

Thick Film Products

Wrap Around Resistors

Our five sided wrap around with a double layer termination hermetically seals in the sensitive resistor/conductor interface. This unique construction allows for easier wire bonding and electrical probing. By coupling this multilayer construction with the superior five sided termination, and abrasive trimming, results in a quality product that has higher chip to board adhesion, higher power dissipation, better stability and longer life.

Half Wrap Resistors

MSR Resistors

Top gold pads for wire bonding or solderable top pads for flip chip applications

QPL Approved Products

Approved to all MIL-PRF-55342 style parts Qualified to "S" Life Failure Rate Qualified to "T" Space Level

"T" and "PI" Attenuators

Low loss attenuators

Chip Jumpers (Wrap Around & MSR styles)

Ideally suited for interconnections and wiring crossovers

Mounting Pads

Gold pads on ceramic

Jumper Kits and Combo Kits

Surface Mount Resistor Networks

Applications

- High Reliability Microelectronics
- Military
- Biotelemetry
- Surface Mount
- Navigation
- Hybrid
- Communications
- Cryogenics

- Medical Implantable
- Space
- Microwave
- Sensors
- Research
- Wireless
- MCM's
- Custom

Metallizations

- Platinum Gold
- Platinum Gold with Nickel barrier and Gold plate
- Platinum Gold with Nickel barrier and solder
- Palladium Silver
- Palladium Silver with Nickel barrier and Gold plate
- Palladium Silver with Nickel barrier and solder
- Gold
- Silver

Substrates

- 96% Alumina substrates
- Also available: black ceramic and beo

Testing Short time overload

- Resistance to bonding exposure
- Resistance to soldering heat
- Thermal shock
- Temperature cycling
- Moisture resistance
- Low temperature operation
- High temperature exposure
- Solderability testing
- Die shear
- End cap pull
- Matching and tracking
- Temperature coefficient of resistance (TCR)
- Voltage coefficient of resistance (VCR)
- Life and extended life testing
- Adhesion, solder mounting integrity
- Power burn-in
- Bondability and wire bond integrity testing
- Steam aging
- Constant acceleration
- Cross sectional analysis
- Resistor noise testing
- Data logging of DC resistance

Thick Film Process Capabilities

Equipment

Screen printing

Systems

Custom blended pastes Substrate size — up to 4" x 6"

Line width definition

Resistor element geometry down to 0.007" Conductor linewidths to 0.005

Screens

Sizes up to 8" x 12"

Firing

Belt furnaces

Trimming

- Computer controlled abrasive trimmers
- Trim tolerances to 0.1%

Separation

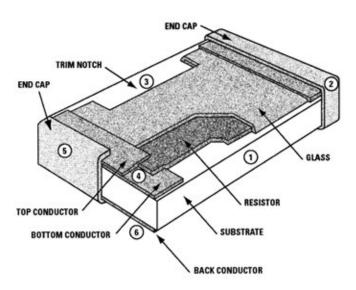
- Full automatic dicing saws
- Laser machining available

Die handling and sorting

- Automatic and semiautomatic tape to waffle pack die pickers
- Tape and reel
- Wave soldering system
- Automatic end metallization system

QA Systems

- ♦ 100% Visual per MIL-STD-883, Method 2032
- ♦ 100% DC resistance per MIL-STD-202
- Complete MIL-PRF-55342 testing capabilities
- Element evaluation per MIL-PRF-38534, class H and K
- Cross sectional analysis
- Surface mount reflow soldering
- Customer selected


Engineering systems

- Autocad design, file formats handled includes DXF, DWG
- Comprehensive design review and testing

MADE IN AMERICA 8022 BEV E

Construction of MSI Precision Chip Resistors

ANATOMY OF A HIGH RELIABILITY THICK FILM CHIP RESISTOR

To illustrate Mini-Systems approach, the following design and fabrication considerations are used for WA, MSR, and QPL series resistors in our thick film processes to maximize the components performance in:

1. Automated Electronic Assembly

Diamond saw die separation tightly controls the resistor's dimensional tolerances, thus improving pick and place assembly by reducing components misplacement and resets.

2. Surface Mount Adhesion

The unique, (5) sided construction of the wrap around termination maximizes component to board solder adhesion in a way that minimizes component tombstoning.

3. Electrical Performance

The fine nozzle, sand blasting method of abrasively trimming resistors results in a component that has lower noise, better short and long term stability, better resistance to voltage pulses, and improved power handling characteristics than a LASER trimmed component.

4. Bondability

All resistors are fabricated with the resistor film sandwiched between a bottom conductor and a top conductor termination. This construction exposes the maximum bond pad area for multiple wire bonds, automated wire bonding and solder coverage. Also inherent to this design is better long term stability, and power handling. Five separate screenings of each part give a consistent and unique advantage.

5. Solderability

Hot solder dip tinning for optimum shelf life and best solder wetting.

6. Chip Attach

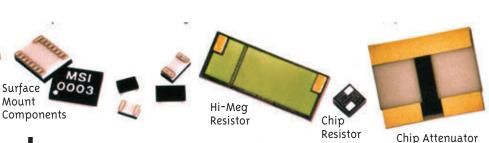
Precisely screened-on backside conductors provide a uniform clear space and prevents shorting.

7. Reliability and Testing

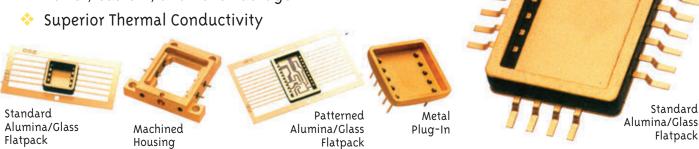
Processed materials are continuously tested for mechanical and electrical performance parameters to MIL-PRF55342. Our current DLA failure rating is "S" which represents more than (91) million hours of life testing without a failure.

8. Stray Capacitance

Minimized and consistent by controlled dimensions imparted by (5) precise screenings.


RC Network

Thin Film



- Microwave Resistors, Terminations, Attenuators, and Capacitors
- Single, Binary, RC, and Networks MOS Capacitors
- Surface Mount, Packaged and Wire Bondable Configurations

Electronic Package

- Hermetic Packages The "ULTIMATE" Device Protection
- High Performance, Alumina / Glass Walled Flat Packs
- Plug-in Surface Mount Configurations
- Microwave Packages, Precision Machined Metal Package
- Power, Custom, and TO-8 Package

For more product information and technival assistance, call, fax, e-mail, or visit web site. www.mini-systems.com

Thick Film Division

ISO 9001 Certified

20 David Road, PO Box 69 North Attleboro, MA 02761-0069 508-695-0203 Fax 508-695-6076 E-Mail: msithick@Mini-SystemsInc.com

Thin Film Division

45 Frank Mossberg Drive, PO Box 1659 Attleboro, MA 02703-0028 508-226-2111 Fax 508-226-2211 E-Mail: msithin@Mini-SystemsInc.com

Electronic Package Division

168 E. Bacon Street, P.O. Box 1597 Plainville, MA 02762-0597 508-695-2000 Fax 508-695-8758 E-Mail: msipkg@Mini-SystemsInc.com

Recipient of Corporate Achievement Award