Thin Film Products

Page

Process Capabilities	3
Thin Film Materials	4
Wire Bondable Chip Resistors	5
High Value Wire Bondable Resistors	7
Surface Mount Resistors	9
Dual Chip Resistors	11
Top Contact Microwave Chip Resistors	13
Surface Mount Microwave Chip Resistors	15
Wire Bondable High Power Chip Resistors	17
Surface Mount High Power Chip Resistors	19
Back Contact Chip Resistors	21
Thin Film Jumpers	23
Top Contact Thin Film Attenuators	25
Surface Mount Thin Film Attenuators	27
Thin Film Resistor Arrays	29
Multi-Tap Resistors	31
M.O.S. Chip Capacitors	33
RC Networks	35
Custom Patterned Substrates	36
Available Testing	37
Resource Page	38

DCESS CAPABILITIES

COMPANY PROFILE

MINI-SYSTEMS, INC. (MSI) was founded in 1968 by GLEN E. ROBERTSON.

MSI is committed to customer satisfaction through on-time deliveries, exceeding customer expectations, and offering new and innovative products and technologies. MSI ensures this through training and a unified teamwork approach. Dedication, integrity, honesty, professionalism and constant improvement to quality when dealing with customers and vendors is the responsibility of every employee. MSI strives to be the industry leader in thin film resistor technology.

MINI-SYSTEMS, INC.

- **Thick Film Division** •
- Thin Film Division
 - Thin Film Precision Resistors and Capacitors Electronic Package Division - Glass Wall and Microwave Packages

APPLICATIONS

- High Reliability Microelectronics
- Medical Implantable Devices & Life Support
- Military Hardware •
- Space Exploration
- Satellite Communications
- Biotelemetry •
- **Microwave Communications**

- Surface Mount Technology .

- PRODUCTS
- Chip Resistors: Single, Back Contact, Center Tap, Dual, Multitaps, Arrays and Networks
- Microwave Resistors, Terminations, and Attenuators
- MOS, Binary Chip Capacitors and RC Network Capability
- Packaged Resistors: RSMT and RSMA LCC Replacements for Conventional Leaded Packages •
- Metallized Substrates: Single or Double Sided, Polished or as Fired •
- Custom Resistor Networks, Patterned Substrates and Circuits •
- SMT Resistors and Resistor Arrays
- Wilkinson Power Dividers
- **Microwave Couplers** •
- Chip Jumpers •
- **Chip Inductors** •
- One, Two, or Six-Sided Metallizations, Thru-Hole Vias Available
- Laser Cutouts, Preferred Via Diameter to Substrate Thickness Ratio 1:1
- *Note: All Styles are Available in Array Combinations

EQUIPMENT

Sputtering	RF Diode and DC Magnetron, PECVD SiO ₂ and Si ₃ N ₄ Deposition				
Annealing	Oxidation Furnace, Vacuum Assisted Annealing Furnace				
Electroplating	Nickel and Gold. Meets Requirements MIL-G-45204C, Amendment 2, Type I and Type III, Grade A				
Photoresist Systems	Negative and Positive Photoresist Systems. Spray and Spin Coating. Wet and Dry Etch Fabrication Techniques				
Line Width Definition	Resistor Geometries to 0.1 Mils Conductor - Gold; 0.2 Mils, ±0.05 Mils				
Photo Mask	Size 5" X 5"				
Mask Tones	Resistor Level: Dark Image / Clear Field Conductor Level: Dark Field / Clear Image Clear Field / Dark Image Glassivation Level: Dark Image / Clear Field Registration Accuracy "A" to "B" Side : ±0.002"				
Laser Trimming	ESI Model 44 YAG Thin Film Laser Trimmers - Spot Size to 0.0003" Trim Tolerances to $\pm 0.01\%$ or 2 Milliohms Resolution				
Separation	Diamond Saw Separation of Silicon, Alumina, Quartz, Beryllium Oxide, and Aluminum Nitride. Laser Machining Available				
Die Handling	Automatic Test and Ink Marking System Semi-Automatic Tape to Waffle Pack Die Pickers High Power Metallurgical Inspection Microscopes Tape and Reel, Waffle Pack, Gel Pack Visual Inspection per Class H and K				
Quality Assurance	ISO 9001 Certified 100% Visual and DC Electrical Inspection per MIL-STD-883 Complete MIL-R-55342 Testing Capabilities Element Evaluation per MIL-H-38534, Class H and K SPC Process Monitoring, PFMEA Mini Systems Inc. Reliability Program, MSIRP ™				
Engineering	Autocad, File Formats Handled Include DXF & IGES. Comprehensive Design Review and Testing				

- Thick Film Precision Chip Resistors, QPL Resistors

- Hybrid Designs .
 - Broad Research Applications Communications: Land and Wireless
 - MCM's
 - Cryogenics Technology
 - Data Exchange

THIN FILM MATERIALS

SUBSTRATE MATERIALS

Material	Size	Thickness	Surface Finish	Dielectric Constant (@ 1MHz)	Coefficient of Thermal Expansion (x 10 ⁻⁶ /°C)	Thermal Conductivity (W/m• K)
Silicon (Si) (with 12kÅ SiO ₂)	3" Dia.	0.005" - 0.015"	Chemical Polish	N/A (SiO ₂ 1.38)	2.49 - 4.44 (25°C to <1000°C)	149 (SiO ₂ 1.38)
Alumina (Al ₂ 0 ₃)	To 4" Sq.	0.005" - 0.025"	2µ"-3µ"	9.9	7 (25°C to 300°C)	26.9
Polished Alumina (Al ₂ 0 ₃)	To 4" Sq.	0.005" - 0.025"	To < 2 μ"	9.9	7 (25°C to 300°C)	26.9
Quartz (Fused Silica)	3" Dia.	0.005" - 0.010"	60/40 Optical Polish	3.826	0.55 (25°C to 320°C)	1.38
Beryllium Oxide (BeO)	2.25" Sq.	0.010" - 0.025"	4μ"-6μ"	6.76	9 (25°C to <1000°C)	285
Aluminum Nitride (AlN)	2.25" Sq.	0.010" - 0.025"	6μ"-8μ"	8 - 9.1	4.6 - 5.7 (25°C to <1000°C)	170

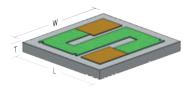
RESISTOR MATERIALS

Material	Passivation	Sheet Resistivity (Ω/Sq)	Abs. Tolerance	Ratio Tolerance	T.C.R. (ppm/ °C)	T.C. Tracking (ppm/ °C)
NiChrome (NiCr)	SiO ₂ or Si ₃ N ₄	5 to 200	From ±0.01%	From ±0.01%	To ±5	To ±2
Tantalum Nitride (TaN)	Self Passivating Ta ₂ 0 ₅	5 to 300	From ±0.01%	From ±0.01%	To ±10	To ±2
SiChrome (SiCr)	SiO ₂ or Si ₃ N ₄	500 to 2500	From ±0.01%	From ±0.01%	To ±100	To ±5

CONDUCTOR MATERIALS

Material	Typical Thickness	Line Width Resolution	Process Technology	Lithography
Sputtered Gold (Au)	5 kÅ	0.2 mil	Sputtered	Wet Etched
Plated Gold (Au)	25 kÅ on Silicon 30 kÅ on Alumina	0.2 mil	Electroplated	Selective Plating
Aluminum (Al)	15 kÅ	0.2 mil	Sputtered	Wet Etched

ADHESION MATERIALS


Material	Typical Thickness
Palladium (Pd)	1.5kÅ
Titanium (Ti)	500Å
Titungsten (TiW)	600Å

The role of these materials is to form an adhesion layer between resistor element and the termination material. Various metals are employed to form the ideal bond for the desired resistor / conductor system used.

8041 Rev. A

WIRE BONDABLE CHIP RESISTORS

Mini-Systems Inc. Wire Bondable Chip Resistor series offers the design engineer a wide variety of styles with high stability, low TCR and low noise of Thin Film materials to meet the demands of cutting edge design requirements. Electrical connection to associated circuitry is accomplished through wire bonding to terminations located on the top side of the chip. Suitable die attachment methods are epoxy or eutectic attach.

GENERAL CHARACTERISTICS

Resistance Range	1Ω to 70MΩ			
Resistance Tolerance	±0.01% to ±10%			
Termination Material	Gold (Standard), Aluminum (Optional)			
Termination Size	0.0035" Square Min Value Dependent			
Backing Material	Bare Substrate (Standard), Gold (Optional)			
Operating/Storage Temp.	-55°C to +150°C/-65°C to +150°C			
Thickness	MSTF101,21: 0.006" All other types 0.010"			
Voltage Rating	100VDC Max			
Operating Frequency	DC to 500MHz			

SUBSTRATE CHARACTERISTICS

	Available	Dielectric	Thermal	Currei	Lowest	
SUBSTRATE MATERIAL	Thickness	Constant @ 1MHz	Conductivity W/m• K	101Ω to $250k\Omega$	≤100Ω > 250kΩ	Tolerance Available
99.6% Alumina (Al ₂ 0 ₃)	0.005" - 0.025"	9.9	28	-35 dB	-30 dB	0.05%
Silicon (Si) (with 12kÅ SiO ₂)	0.005" - 0.015"	N/A (SiO ₂ 3.9)	149 (SiO ₂ 1.38)	-40 dB	-30 dB	0.01%
Quartz	0.005" - 0.010"	3.75	1.3	-40 dB	-30 dB	0.01%
Beryllium Oxide (BeO)	0.010" - 0.025"	6.7	300	-30 dB	-20 dB	0.1%
Aluminum Nitride (AlN)	0.010" - 0.025"	9.0	140 - 177	-30 dB	-20 dB	0.1%

RESISTOR CHARACTERISTICS

RESISTOR FILM	Passivation	Standard TCR	TCR Optional To (Si,Quartz, Al ₂ O ₃ , Only)	
Tantalum Nitride	Ta ₂ O ₅ (Self Passivating)	±150 ppm/°C	±10 ppm/°C	
NiChrome	SiO2	±25 ppm/°C	±5 ppm/°C	

PART NUMBER DESIGNATION

MSTF	- 110 -	Α	N —	- 10001	F -	– GGB
STYLE	TYPE	SUBSTRATE	RESISTOR FILM	OHMIC VALUE	TOLERANCE	OPTION
MSTF EXA			T = Tantalum Nitride N = NiChrome GB NiChrome, 10kΩ, ±1% Tol	5-Digit Number: 1st 4 digits are significant with "R" as decimal point when required. 5th digit represents number of zeros.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D = \pm 5ppm/^{\circ}C$ $C = \pm 10ppm/^{\circ}C$ $B = \pm 25ppm/^{\circ}C$ $A = \pm 50ppm/^{\circ}C$ $F = \pm 100ppm/^{\circ}C$ $E = Aluminum Pads$ $G = Gold Bond Pads$ $GB = Gold Back$ $TR = Tape \& Reel$
				FILM DIVISION		
-		EMS INC.	NORTH	20 DAVID ROAD ATTLEBORO, MA 02760		RoHS Compliant
		AMERICA	EMAIL: msith	nin@Mini-SystemsInc.com v.Mini-SystemsInc.com		Compilant Compilant
F	SINCE	1968		695-0203 FAX:508-695-6076		

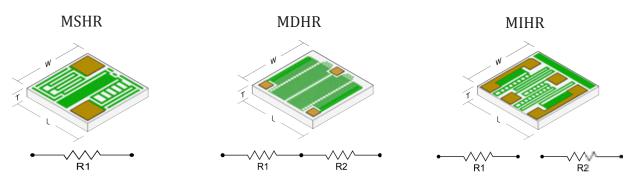
WIRE BONDABLE CHIP RESISTORS

		DIMEN	ISIONS		RESISTANCE RAM	IGE		POWER	RATING 1	
CASE SIZE	ТҮРЕ	L (±0.003") [±0.076mm]	W (±0.003") [±0.076mm]	Low Values (Std. TCR Only) (Tol.≥0.50%)	NiCr or [TaN] on Si or Quartz	NiCr or [TaN] on Al ₂ O ₃ , BeO or AlN	Quartz	Si Al ₂ 0 ₃	AIN	BeO
0101	101	0.012" [0.305]	0.009" [0.229]	$1\Omega < 4\Omega$	4Ω - 45kΩ [150kΩ]	4Ω -20kΩ [25kΩ]	10mW	50mW	200mW	400mW
0201	21	0.020" [0.508]	0.010" [0.254]	$1\Omega < 3\Omega$	3Ω - 350kΩ [500kΩ]	3Ω - 55kΩ [71.5kΩ]	10mW	50mW	200mW	400mW
0202	1	0.015" [0.381]	0.015" [0.381]	$1\Omega < 2\Omega$	2Ω - 700kΩ [1MΩ]	2Ω - 60kΩ [75kΩ]	10mW	50mW	200mW	400mW
0202	122	0.020" [0.508]	0.016" [0.406]	$1\Omega < 3\Omega$	3Ω - 1MΩ [1.3MΩ]	3Ω - 75kΩ [97.5kΩ]	25mW	125mW	500mW	1W
0202	2	0.020" [0.508]	0.020" [0.508]	$1\Omega < 3\Omega$	3Ω - 1.2MΩ [1.6MΩ]	3Ω - 130kΩ [169kΩ]	50mW	250mW	1W	2W
0302	32	0.030" [0.762]	0.020" [0.508]	$1\Omega < 3\Omega$	3Ω - 1.5ΜΩ [2ΜΩ]	3Ω - 200kΩ [250kΩ]	50mW	250mW	1W	2W
0303	33	0.030" [0.762]	0.030" [0.762]	1Ω <2Ω	2Ω - 2.5ΜΩ [4ΜΩ]	2Ω - 250kΩ [325kΩ]	50mW	250mW	1W	2W
0402	110	0.037" [0.940]	0.017" [0.432]	$1\Omega < 3\Omega$	3Ω - 2MΩ [3MΩ]	3Ω - 200kΩ [250kΩ]	25mW	125mW	500mW	1W
0404	35	0.035" [0.889]	0.035" [0.889]		1Ω - 4.5MΩ [6.5MΩ]	1Ω - 325kΩ [420kΩ]	50mW	250mW	1W	2W
0404	4	0.040" [1.016]	0.040" [1.016]		1Ω - 7.5MΩ [11MΩ]	1Ω - 500kΩ [650kΩ]	70mW	350mW	1.4W	2.8W
0502	53	0.045" [1.143]	0.030" [0.762]	$1\Omega < 3\Omega$	3Ω - 4.5MΩ [6.5MΩ]	3Ω - 325kΩ [420kΩ]	100mW	500mW	2W	4W
0502	115	0.050" [1.270]	0.025" [0.635]	$1\Omega < 3\Omega$	3Ω -4.5MΩ [6.5MΩ]	3Ω - 325kΩ [420kΩ]	50mW	250mW	1W	2W
0505	112	0.050" [1.270]	0.050" [1.270]		1Ω - 10MΩ [14MΩ]	1Ω - 750kΩ [975kΩ]	100mW	500mW	2W	4W
0603	63	0.060" [1.524]	0.030" [0.762]	$1\Omega < 3\Omega$	3Ω - 7.5MΩ [11MΩ]	3Ω - 500kΩ [650kΩ]	100mW	500mW	2W	4W
0606	6	0.060" [1.524]	0.060" [1.524]		1Ω - 30MΩ [40MΩ]	1Ω - 2.5MΩ [3.25MΩ]	100mW	500mW	2W	4W
0805	85	0.075" [1.905]	0.050" [1.270]		1Ω - 30MΩ [40MΩ]	1Ω - 2.5MΩ [3.25MΩ]	100mW	500mW	2W	4W
1005	120	0.100" [2.540]	0.050" [1.270]		1Ω - 35MΩ [45MΩ]	1Ω - 3MΩ [3.9MΩ]	100mW	500mW	2W	4W
1010	121	0.100" [2.540]	0.100" [2.540]		1Ω - 60MΩ [70MΩ]	1Ω - 4ΜΩ [5ΜΩ]	150mW	750mW	3W	6W
1206	126	0.126" [3.200]	0.063" [1.524]		1Ω - 40ΜΩ [50ΜΩ]	1Ω - 3.5MΩ [4.5MΩ]	150mW	750mW	3W	6W

MSTF 118 will continue to be available, size and characteristics similar to MSTF 122

MSPR 1 will continue to be available, size and characteristics same as MSTF 53

MSMR 1 will continue to be available, size and characteristics same as MSTF 101


 $^{\rm 1}$ Power Rating at 70°C derated linearly to 0% at 150°C

PERFORMANCE SPECIFICATIONS

PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	2.5xWVDC(6.25xRATED POWER)MIL-PRF-55342, +25°C, 5 SEC	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
HIGH TEMP EXPOSURE	+150°C, 100HRS	± 0.20 MAX $\Delta R/R$	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
MOISTURE RESISTANCE	MIL-STD 202, METHOD 106	± 0.40 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	± 0.50 MAX $\Delta R/R$	±0.10 MAX ΔR/R

All MSTF Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342

HIGH VALUE WIRE BONDABLE RESISTORS

Mini-Systems Inc. **High Value Wire Bondable Chip Resistor** series offers the design engineer a wide variety of styles with the **high stability** of Thin Film materials to meet the demands of cutting edge design requirements. Electrical connection to associated circuitry is accomplished through wire bonding to terminations located on the top side of the chip. Suitable die attachment methods are epoxy or eutectic attach.

GENERAL CHARACTERISTICS

Resistance Range	$301 \mathrm{k}\Omega$ to $100 \mathrm{M}\Omega^1$		
Resistance Tolerance	±0.1% to ±10%		
Termination Material	Gold (Standard) Aluminum (Optional)		
Termination Size 0.0035" Square Min Value Dependent			
Backing Material	Bare Substrate (Standard) Gold (Optional)		
Operating Temperature	-55°C to +150°C		
Storage Temperature	-65°C to +150°C		
Voltage Rating	100VDC Max		

¹Consult Engineering if higher valued resistors are required

SUBSTRATE CHARACTERISTICS

SUBSTRATE MATERIAL	Available Thickness	Dielectric Constant @ 1MHz	Thermal Conductivity W/m• K
Silicon (Si) (with 12kÅ SiO ₂)	0.005" - 0.015"	N/A (SiO ₂ 3.9)	149 (SiO ₂ 1.38)
Quartz	0.005" - 0.010"	3.75	1.3

RESISTOR CHARACTERISTICS

RESISTOR FILM Passivation		Standard TCR	TCR Optional To	TCR Tracking	
SiChrome	SiO ₂	±150 ppm/°C	±100 ppm/°C	±5ppm/°C	

PART NUMBER DESIGNATION

$\frac{\text{MIHR}}{1} - \frac{3}{1}$	- S	S	30003 ¹	F -	– <u>RN</u> –	GGB
STYLE TYPE	SUBSTRATE	RESISTOR FILM		TOLERANCE	RATIO ³	
MSHR See Table MDHR MIHR	Q = Quartz	S = SiChrome	5-Digit Number: 1st 4 digits are significant with "R" as decimal point when required. 5th digit represents number of zeros.	$B = \pm 0.1\%$ $D = \pm 0.5\%$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$	$RB = \pm 0.05\%$ $RC = \pm 0.10\%$ $RE = \pm 0.25\%$ $RD = \pm 0.50\%$ RN = No Ratio	$F = \pm 100 \text{ppm/°C}$ E = Aluminum Pads G = Gold Bond Pads GB = Gold Back TR = Tape & Reel

EXAMPLE: MIHR-3-SS-30003/40003F-RN-GGB

MIHR-3 Series, Silicon, SiChrome, $3M\Omega/4M\Omega,\pm1\%$ Tol., No Ratio, Gold Pads, Gold Backside 1 Use for single resistors

^{2,3} Use for dual resistors

MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

THIN FILM DIVISION

HIGH VALUE WIRE BONDABLE RESISTORS

HIGH VALUE WIRE BONDABLE CHIP RESISTORS

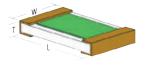
			DIMENSIONS			POWER	RATING ¹
CASE SIZE	ТҮРЕ	L (±0.003") [±0.076mm]	W (±0.003") [±0.076mm]	T (±0.003") [±0.076mm]	RESISTANCE RANGE ²	Quartz	Si
0101	101	0.012" [0.305]	0.009" [0.229]	0.006" [0.152]	301kΩ -1.2MΩ	10mW	50mW
0201	21	0.020" [0.508]	0.010" [0.254]	0.006" [0.152]	451kΩ - 1.8MΩ	10mW	50mW
0202	1	0.015" [0.381]	0.015" [0.381]	0.010" [0.254]	1.1ΜΩ - 7ΜΩ	10mW	50mW
0202	122	0.020" [0.508]	0.016" [0.406]	0.010" [0.254]	1.1MΩ - 2MΩ	25mW	125mW
0202	2	0.020" [0.508]	0.020" [0.508]	0.010" [0.254]	1.7ΜΩ - 12ΜΩ	50mW	250mW
0302	32	0.030" [0.762]	0.020" [0.508]	0.010" [0.254]	2.1MΩ - 15MΩ	50mW	250mW
0303	3	0.030" [0.762]	0.030" [0.762]	0.010" [0.254]	4.1ΜΩ - 25ΜΩ	50mW	250mW
0402	110	0.037" [0.940]	0.017" [0.432]	0.010" [0.254]	3.1MΩ - 20MΩ	25mW	125mW
0404	35	0.035" [0.889]	0.035" [0.889]	0.010" [0.254]	6.6ΜΩ - 45ΜΩ	50mW	250mW
0404	4	0.040" [1.016]	0.040" [1.016]	0.010" [0.254]	11.1MΩ - 50MΩ	70mW	350mW
0502	53	0.045" [1.143]	0.030" [0.762]	0.010" [0.254]	6.6ΜΩ - 45ΜΩ	100mW	500mW
0502	115	0.050" [1.270]	0.025" [0.635]	0.010" [0.254]	6.6ΜΩ - 45ΜΩ	50mW	250mW
0505	112	0.050" [1.270]	0.050" [1.270]	0.010" [0.254]	14.1ΜΩ - 75ΜΩ	100mW	500mW
0603	63	0.060" [1.524]	0.030" [0.762]	0.010" [0.254]	11.1MΩ - 50MΩ	100mW	500mW
0606	6	0.060" [1.524]	0.060" [1.524]	0.010" [0.254]	40.1ΜΩ - 100ΜΩ	100mW	500mW
0805	85	0.075 " [1.905]	0.050" [1.270]	0.010" [0.254]	40.1ΜΩ - 100ΜΩ	100mW	500mW

 1 Power Rating at 70°C derated linearly to 0% at 150°C

² Consult Engineering if higher valued resistors are required

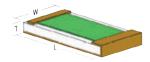
DUAL HIGH VALUE WIRE BONDABLE CHIP RESISTORS

CASE]	DIMENSIONS		RESISTANCE	POWER RATING ¹ Per Resistor	
SIZE	STYLE	LAYOUT	VALUES	L (±0.003") [±0.076mm]	W (±0.003") [±0.076mm]	T (±0.003") [±0.076mm]	RANGE ²	Quartz	Si
0303	MDHR 3	Center Tapped	R1 ≤ R2	0.030" [0.762]	0.030" [0.762]	0.010" [0.254]	1.3MΩ - 15MΩ Per Res	25mW	125mW
0303	MIHR 3	Isolated	R1 ≤ R2	0.030" [0.762]	0.030" [0.762]	0.010" [0.254]	1.3MΩ - 15MΩ Per Res	25mW	125mW
0404	MDHR 4	Center Tapped	R1 ≤ R2	0.040" [1.016]	0.040" [1.016]	0.010" [0.254]	6.1MΩ - 25MΩ Per Res	25mW	125mW
0404	MIHR 4	Isolated	R1 ≤ R2	0.040" [1.016]	0.040" [1.016]	0.010" [0.254]	6.1MΩ - 25MΩ Per Res	25mW	125mW


¹ Power Rating at 70°C derated linearly to 0% at 150°C

²Consult Engineering if higher valued resistors are required

All MSHR, MSDR, MIHR Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342


SURFACE MOUNT RESISTORS

Wrap Around (WATF)

Solderable gold with nickel barrier OR Nickel barrier pre-soldered

Half-Wrap (HWTF)

Solderable gold with nickel barrier OR Nickel barrier pre-soldered Isolated pad is wire bondable

Mini-Systems, Inc. **Surface Mount Chip Resistors** are available in a wide range of case sizes, with each size offered in wrap around and half wrap termination styles. All solderable terminations have a nickel barrier for enhanced solder performance. This series is designed to be connected to associated circuitry through wire-bonding, conductive epoxy or soldering. Mini-Systems, Inc. time tested materials produce chip resistors with high stability, low noise and low TCR to provide the hybrid electronics industry resistor products with the highest standards available.

GENERAL CHARACTERISTICS

Resistance Range	1Ω to 6MΩ
Resistance Tolerance	±0.01% to ±10%
Termination Material	(NU) Solderable Gold with Nickel Barrier, (NT) Nickel with Solder
Operating Temperature	-55°C to +150°C
Storage Temperature	-65°C to +150°C
Operating Frequency	DC to 500 MHz

SUBSTRATE CHARACTERISTICS

	Available	ailable Dielectric		Current Noise		
SUBSTRATE MATERIAL	Thickness	Constant @ 1MHz	Conductivity W/m• K	101Ω to $250k\Omega$	≤100Ω > 250kΩ	
99.6% Alumina	0.010" - 0.025"	9.9	28	-35dB	-30dB	
Beryllium Oxide	0.010" - 0.025"	6.7	300	-30dB	-20dB	
Aluminum Nitride	0.010" - 0.025"	9.0	140 - 177	-30dB	-20dB	

RESISTOR CHARACTERISTICS

RESISTOR FILM	Passivation	Standard TCR	TCR Optional To:
Tantalum Nitride	Tantalum Nitride Ta205 (Self Passivating)		±10 ppm/°C
NiChrome	SiO ₂	±25 ppm/°C	±5 ppm/°C

PART NUMBER DESIGNATION

WATF	- 5	— <u>A</u>	T	100R0	F	— <u>NT3</u>
STYLE	ТҮРЕ	SUBSTRATE	RESISTOR FILM	OHMIC VALUE	TOLERANCE	OPTION
WATF HWTF	SEE TABLE	A = Alumina B = BeO N = AIN	T = Tantalum Nitride N = NiChrome	5-Digit Number: 1st 4 digits are significant with "R" as decimal point when required. 5th digit represents number of zeros.	$\begin{array}{l} S &= \pm 0.01\% \\ Q &= \pm 0.05\% \\ B &= \pm 0.1\% \\ D &= \pm 0.5\% \\ F &= \pm 1\% \\ G &= \pm 2\% \\ J &= \pm 5\% \end{array}$	D = ±5ppm/°C C = ±10ppm/°C B = ±25ppm/°C A = ±50ppm/°C F = ±100ppm/°C NU = Soldereable Au w/ Ni barri NT3 = Nickel w/ SAC305 Solder
EXAMPLE:	WATF-5-AT-1	00R0F - NT3			$K = \pm 10\%$	NT = Nickel w/ Sn62 Solder TR = Tape and Reel

WATF-5 Series, Alumina, Tantalum Nitride, 100Ω, ±1% Tol., Nickel w/ SAC305 Solder, RoHS Compliant

MADE IN AMERICA SINCE 1968

THIN FILM DIVISION ISO 9001 CERTIFIED 20 DAVID ROAD NORTH ATTLEBORO, MA 02760

NORTH ATTLEBORO, MA 02760 EMAIL: msithin@Mini-SystemsInc.com WEB: www.Mini-SystemsInc.com PHONE: 508-695-0203 FAX:508-695-6076

SURFACE MOUNT RESISTORS

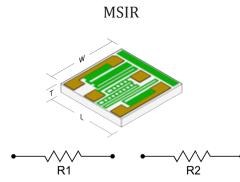
			DIMENSIONS	6	RESIST	ANCE RANGE	PC	OWER RATIN	G1
CASE SIZE	ТҮРЕ	L (±0.003") [±0.076mm]	W (±0.003") [±0.076mm]	T ² (±0.003") [±0.076mm]	Low Values NiCr or TaN (Std. TCR Only) (Tol.≥0.5%)	Standard Values NiCr or [TaN]	Alumina	AIN	BeO
0201	21	0.020" [0.508]	0.010" [0.254]	0.006" [0.152]	1Ω < 3Ω	3Ω - 55kΩ [80kΩ]	50mW	200mW	400mW
0202	7	0.020" [0.508]	0.020" [0.508]	0.010" [0.254]	$1\Omega < 3\Omega$	3Ω - 130kΩ [190kΩ]	125mW	500mW	1W
0302	32	0.030" [0.762]	0.020" [0.508]	0.010" [0.254]	$1\Omega < 3\Omega$	3Ω - 200kΩ [300kΩ]	125mW	500mW	1W
0402	1	0.040" [1.016]	0.020" [0.508]	0.010" [0.254]	1Ω < 3Ω	3Ω - 200kΩ [300kΩ]	125mW	500mW	1W
0404	2	0.035" [0.889]	0.035" [0.889]	0.010" [0.254]		1Ω - 325kΩ [500kΩ]	250mW	1W	2W
0502	8	0.055" [1.397]	0.025" [0.635]	0.010" [0.254]	1Ω < 3Ω	3Ω - 250kΩ [400kΩ]	250mW	1W	2W
0505	4	0.050" [1.270]	0.050" [1.270]	0.010" [0.254]		1Ω - 750kΩ [1.25MΩ]	350mW	1.4W	2.8W
0603	63	0.060" [1.524]	0.030" [0.762]	0.010" [0.254]	$1\Omega < 3\Omega$	3Ω -300kΩ [500kΩ]	250mW	1W	2W
0805	3	0.075" [1.905]	0.050" [1.270]	0.010" [0.254]		1Ω - 2.5ΜΩ [4ΜΩ]	500mW	2W	4W
1005	6	0.100" [2.54]	0.050" [1.270]	0.010" [0.254]		1Ω - 3.5MΩ [5MΩ]	500mW	2W	4W
1206	5	0.126" [3.20]	0.063" [1.60]	0.010" [0.254]		1Ω - 4MΩ [3.5MΩ]	750mW	3W	6W
1505	9	0.153" [3.886]	0.050" [1.270]	0.010" [0.254]		1Ω - 4ΜΩ [6ΜΩ]	750mW	3W	6W

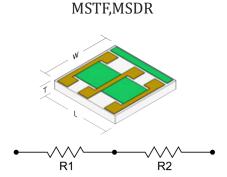
 $^{\rm 1}$ Power Rating at 70°C derated linearly to 0% at 150°C

² Thickness does not include solder

PERFORMANCE SPECIFICATIONS

PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	2.5xWVDC(6.25xRATED POWER)MIL-PRF-55342, +25°C, 5 SEC	±0.25 MAX ΔR/R	±0.10 MAX ΔR/R
HIGH TEMP EXPOSURE	+150°C, 100HRS	± 0.20 MAX $\Delta R/R$	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
MOISTURE RESISTANCE	MIL-STD 202, METHOD 106	± 0.40 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	± 0.50 MAX $\Delta R/R$	±0.10 MAX ΔR/R


All WATF, HWTF Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342



THIN FILM DIVISION

DUAL CHIP RESISTORS

Mini-Systems, Inc. **Dual Resistor** series supplies the design engineer with two discrete resistors on a single chip with either a common or isolated node. This configuration is ideal for applications where a **closely matched tolerance**, **TCR** and **tracking** are critical and space is a premium. This series provides the **high stability, low noise, tight tolerance, ratio tracking, low TCR** and TC tracking of Mini-Systems, Inc. proven Thin Film process. Connection to associated circuitry is accomplished by wire bonding to terminations located on the top side.

				DIMEN	ISIONS	RESISTANCE RANGE POWER RATING ¹ Per Resistor						
CASE SIZE	STYLE	LAYOUT	VALUES		W (±0.003") [±0.076mm]	Low Values All Sustrates NiCr or TaN (Std. TCR Only) (Tol.≥0.1%)	NiCr or [TaN] on Si or Quartz	NiCr or [TaN] on Al ₂ O ₃ , BeO or AlN	Quartz	Si, Al ₂ 0 ₃	AIN	BeO
0303	MSTF 3	Center Tapped	R1 = R2	0.030" [0.762]	0.030" [0.762]	2Ω < 4Ω Total	4Ω - 2MΩ [2.5MΩ] Total	2Ω - 250kΩ [325kΩ] Total	25mW	125mW	500mW	1W
0303	MSDR 3	Center Tapped	R1 ≤ R2	0.030" [0.762]	0.030" [0.762]	1Ω < 2Ω Per Res	2Ω - 1MΩ [1.2MΩ] Per Res	1Ω - 125kΩ [160kΩ] Per Res	25mW	125mW	500mW	1W
0303	MSIR 3	Isolated	R1 ≤ R2	0.030" [0.762]	0.030" [0.762]	1Ω < 2Ω Per Res	2Ω - 1MΩ [1.2MΩ] Per Res	1Ω - 125kΩ [160kΩ] Per Res	25mW	125mW	500mW	1W
0404	MSDR 4	Center Tapped	R1 ≤ R2	0.040" [1.016]	0.040" [1.016]	1Ω < 2Ω Per Res	2Ω - 4MΩ [6MΩ] Per Res	1Ω - 125kΩ [160kΩ] Per Res	25mW	125mW	500mW	1W
0404	MSIR 4	Isolated	R1 ≤ R2	0.040" [1.016]	0.040" [1.016]	1Ω < 2Ω Per Res	2Ω -4MΩ [6MΩ] Per Res	1Ω - 125kΩ [160kΩ] Per Res	25mW	125mW	500mW	1W

 $^{\scriptscriptstyle 1}$ Power Rating at 70°C derated linearly to 0% at 150°C

PART NUMBER DESIGNATION

MSDR STYLE	- 4 TYPE	- <u>A</u> SUBSTRATE	N RESISTOR FILM	10001 ¹ 10001/20001 OHMIC VALUE	F - TOLERANCE	– <u>RD</u> – RATIO	CG OPTION
MSDR MSIR MSTF	SEE TABLE	A = Alumina S = Silicon Q = Quartz B = BeO N = AlN	T = Tantalum Nitride N = NiChrome	R1 / R2 5-Digit Number: 1st 4 digits are significant with "R" as decimal point when required. 5th digit represents number of zeros.	$D = \pm 0.5\%$ F = $\pm 1\%$	$RA = \pm 0.01\%$ $RB = \pm 0.05\%$ $RC = \pm 0.10\%$ $RE = \pm 0.25\%$ $RD = \pm 0.50\%$ $RG = \pm 2\%$ RN = No Ratio	$D = \pm 5ppm/^{\circ}C$ $C = \pm 10ppm/^{\circ}C$ $B = \pm 25ppm/^{\circ}C$ $A = \pm 50ppm/^{\circ}C$ $F = \pm 100ppm/^{\circ}C$ $E = Aluminum Pads$ $G = Gold Bond Pads$ $GB = Gold Back$ $TR = Tape \& Reel$

EXAMPLE: MSDR-4-AN - 10001/20001F -RD- CG

MSDR-4 Series, Alumina, NiChrome, 10kΩ / 20kΩ, ±1% Tol., ±0.50% Ratio, ±10ppm/°C, Gold

¹ Use for MSTF 3 where R1 = R2. All other styles R1 \leq R2

MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

THIN FILM DIVISION

DUAL CHIP RESISTORS

SUBSTRATE CHARACTERISTICS

	Available	Dielectric	Thermal	Current Noise		
SUBSTRATE MATERIAL	Thickness	Constant @ 1MHz	Conductivity W/m•K	101Ω to $250 k\Omega$	≤100Ω > 250kΩ	
99.6% Alumina	0.005" - 0.025"	9.9	28	-35 dB	-30 dB	
Silicon (with 12kÅ SiO ₂)	0.005" - 0.015"	N/A (SiO ₂ 3.9)	149 (SiO ₂ 1.38)	-40 dB	-30 dB	
Quartz	0.005" - 0.010"	3.75	1.3	-40 dB	-30 dB	
Beryllium Oxide	0.010" - 0.025"	6.7	300	-30 dB	-20 dB	
Aluminum Nitride	0.010" - 0.025"	9.0	140 - 177	-30 dB	-20 dB	

RESISTOR CHARACTERISTICS

RESISTOR FILM	Passivation	Standard TCR	TCR Optional To	TCR Tracking	
Tantalum Nitride	Ta_2O_5 (Self Passivating)	±150 ppm/°C	±10 ppm/°C	±2ppm/°C	
NiChrome	SiO ₂	±25 ppm/°C	±5 ppm/°C	±2ppm/°C	

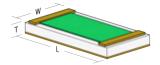
GENERAL CHARACTERISTICS

Resistance Range	1Ω to 6MΩ
Resistance Tolerance	±0.01% to ±10%
Termination Material	Gold (Standard) Aluminum (Optional)
Termination Size	0.0035" Square Min Value Dependent
Backing Material	Bare Substrate (Standard) Gold (Optional)
Standard Thickness	0.010" ±0.003"
Operating Temperature	-55°C to +150°C
Storage Temperature	-65°C to +150°C
Operating Frequency	DC to 500MHz
Thickness	0.010" (0.254mm)

PERFORMANCE SPECIFICATIONS

PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	2.5xWVDC(6.25xRATED POWER)MIL-PRF-55342, +25°C, 5 SEC	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
HIGH TEMP EXPOSURE	+150°C, 100HRS	± 0.20 MAX $\Delta R/R$	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
MOISTURE RESISTANCE	MIL-STD 202, METHOD 106	± 0.40 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	± 0.50 MAX $\Delta R/R$	±0.10 MAX ΔR/R

All MSDR, MSTF, MSIR Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342



THIN FILM DIVISION

TOP CONTACT MICROWAVE CHIP RESISTORS

MSMW

Wire bondable gold OR Solderable gold with nickel barrier OR Nickel barrier pre-soldered

Mini-Systems, Inc. Top Contact Microwave Chip Resistor series is designed to fit a wide variety of applications operating in the Microwave Bands. All sizes offer the high stability, flat frequency response and low noise of Mini-Systems, Inc. Thin Film materials. Specialized LASER trim techniques specifically designed for this series guarantee operation up to 40 GHz. Microwave Chip Resistors can be attached to associated circuitry through ribbon or wire bonding, conductive epoxy, soldering to terminations or mounted as flip-chips.

GENERAL CHARACTERISTICS

Resistance Range	2Ω to 5kΩ				
Resistance Tolerance		±0.5% to ±10%			
Termination ¹	(G) Non-Solderable Gold,	(NU) Soldereable Au w/ Ni barrie	er, (NT) Nickel with Solder		
Backing Material	Bare	Substrate (Standard), Gold (Opti	onal)		
Operating Temperature		-55°C to +150°C			
Storage Temperature		-65°C to +150°C			
Operating Voltage		100V Max.			
VSWR ²	DC to 10GHz 10 to 20GHz 20-40GHz				
	1.2:1	1.3:1	1.5:1		

¹ Soldered or Solderable Gold require a Nickel Barrier

² Achieving operating characteristics is dependent on attachment methods in order to minimize parasitics

SUBSTRATE CHARACTERISTICS

	Available	Dielectric	Thermal	Current Noise		
SUBSTRATE	Thickness	Constant @ 1MHz	Conductivity W/m• K	101Ω to $5k\Omega$	≤ 100Ω	
99.6% Alumina	0.005" - 0.025"	9.9	28	-35dB	-30dB	
Beryllium Oxide	0.010" - 0.025"	6.7	300	-35dB	-30dB	
Aluminum Nitride	0.010" - 0.025"	9.0	140 - 177	-35dB	-30dB	
Quartz	0.005" - 0.010"	3.75	1.3	-40dB	-30dB	

RESISTOR CHARACTERISTICS

RESISTOR FILM	Passivation	Standard TCR	TCR Optional to:
Tatalum Nitride	Ta ₂ O ₅ (Self Passivating)	±150 ppm/°C	±25 ppm/°C
NiChrome	SiO ₂	±25 ppm/°C	±5 ppm/°C

PART NUMBER DESIGNATION

MSMW	<u> </u>	— <u> </u>	<u> </u>	10000	F	— .	GGB
STYLE	TYPE	SUBSTRATE	RESISTOR FILM	OHMIC VALUE	TOLERANCE		OPTION
MSMW	SEE	A = Alumina	T = Tantalum Nitride	5-Digit Number:	$D = \pm 0.5\%$	D	= ±5ppm/°C
	TABLE	B = BeO	N = NiChrome	1st 4 digits are significant	$F = \pm 1\%$	С	= ±10ppm/°C
		N = AlN		with "R" as decimal point	$G = \pm 2\%$	В	= ±25ppm/°C
		$Q = Quartz^3$		when required. 5th digit	$J = \pm 5\%$	А	= ±50ppm/°C
				represents number of zeros.	$K = \pm 10\%$	F	= ±100ppm/°C
						G	= Gold Bond Pads,
EXAMPLE:	MSMW-110 -	AN - 10000F - GG	В			NU	= Soldereable Au w/ Ni barrier
	MSMW-110 Se	eries, Alumina Subs	strate, NiChrome Resistor	r Film, 1kΩ, ±1% Tol., Gold Bor	nd Pads,	NT	= Nickel w/ Sn62 Solder
	Gold Backside	<u>j</u>				NT3	3 = Nickel w/ SAC305 Solder

³ Quartz available as wire bondable only

MINI SYSTEMS INC. MADE IN AMERICA **SINCE 1968**

THIN FILM DIVISION ISO 9001 CERTIFIED

20 DAVID ROAD NORTH ATTLEBORO, MA 02760 EMAIL: msithin@Mini-SystemsInc.com www.Mini-SystemsInc.com WEB: PHONE: 508-695-0203 FAX:508-695-6076

GB = Gold Back TR = Tape & Reel

TOP CONTACT MICROWAVE CHIP RESISTORS

		1	DIMENSION	5		Max.		POWER	RATING ²	
CASE SIZE	ТҮРЕ	L (±0.002") [±0.051mm]	W (±0.002") [±0.051mm]	T ³ (±0.002") [±0.051mm]	Resistance Range	Operating Frequency ¹ GHz	Quartz	Alumina	AIN	BeO
0101	101	0.012" [0.304]	0.009" [0.228]	0.006" [0.152]	3Ω - 200Ω	40	10mW	50mW	200mW	400mW
0201	21	0.020" [0.508]	0.010" [0.254]	0.006" [0.152]	3Ω - 400Ω	40	10mW	50mW	200mW	400mW
0202	1	0.015" [0.381]	0.015" [0.381]	0.010" [0.254]	2Ω - 300Ω	40	10mW	50mW	200mW	400mW
0202	122	0.020" [0.508]	0.016" [0.406]	0.010" [0.254]	2Ω - 360Ω	40	25mW	125mW	500mW	1W
0202	7	0.020" [0.508]	0.020" [0.508]	0.010" [0.254]	2Ω - 400Ω	40	50mW	250mW	1W	2W
0302	32	0.030" [0.762]	0.020" [0.508]	0.010" [0.254]	2Ω - 500Ω	40	50mW	250mW	1W	2W
0402	110	0.037" [0.90]	0.017" [0.432]	0.010" [0.254]	2Ω - 1kΩ	40	25mW	125mW	500mW	1W
0404	2	0.035" [0.889]	0.035" [0.889]	0.010" [0.254]	2Ω - 1kΩ	26	50mW	250mW	1W	2W
0502	115	0.050" [1.270]	0.025" [0.635]	0.010" [0.254]	2Ω - 2kΩ	26	50mW	250mW	1W	2W
0505	112	0.050" [1.270]	0.050" [1.270]	0.010" [0.254]	2Ω - 2kΩ	26	100mW	500mW	2W	4W
0603	8	0.055" [1.397]	0.025" [0.635]	0.010" [0.254]	2Ω - 2kΩ	26	50mW	250mW	1W	2W
0805	3	0.075" [1.905]	0.050" [1.270]	0.010" [0.254]	2Ω - 3kΩ	26	100mW	500mW	2W	4W
1005	120	0.100" [2.540]	0.050" [1.270]	0.010" [0.254]	5Ω - 5kΩ	26	100mW	500mW	2W	4W
1010	121	0.100" [2.540]	0.100" [2.540]	0.010" [0.254]	10Ω - 5kΩ	26	150mW	750mW	3W	6W
1206	5	0.126" [3.200]	0.063" [1.600]	0.010" [0.254]	2Ω - 5kΩ	26	150mW	750mW	3W	6W

MSMW 118 will continue to be available, size and characteristics similar to MSMW122

¹ Achieving operating characteristics in this frequency range is dependent on attachment methods in order to minimize parasitics

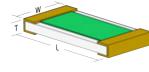
² Power rating at 70°C derated linearly to 0% at 150°C

³ Thickness does not include solder

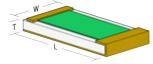
PERFORMANCE SPECIFICATIONS

PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	2.5xWVDC(6.25xRATED POWER)MIL-PRF-55342, +25°C, 5 SEC	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
HIGH TEMP EXPOSURE	+150°C, 100HRS	± 0.20 MAX $\Delta R/R$	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
MOISTURE RESISTANCE	MIL-STD 202, METHOD 106	± 0.40 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	± 0.50 MAX $\Delta R/R$	±0.10 MAX ΔR/R

All MSMW Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342



THIN FILM DIVISION



SURFACE MOUNT MICROWAVE CHIP RESISTORS

Wrap Around (WAMT)

Solderable gold with nickel barrier OR Nickel barrier pre-soldered Half Wrap (HWMT)

Solderable gold with nickel barrier OR Nickel barrier pre-soldered Isolated pad is wire bondable

Mini-Systems, Inc. **Surface Mount Microwave Chip Resistor** series is designed to fit a wide variety of applications operating in the Microwave Bands. All sizes are offered in wrap around and half wrap configurations and offer the **high stability, flat frequency response** and **low noise** of Mini-Systems, Inc. Thin Film materials. **Specialized LASER trim** techniques specifically designed for this series guarantee operation up to **40 GHz**. Microwave Chip Resistors can be attached to associated circuitry through ribbon or wire bonding, conductive epoxy, or soldering to terminations.

GENERAL CHARACTERISTICS

Resistance Range	2Ω to $5k\Omega$				
Resistance Tolerance	±0.5% to ±10%				
Termination ¹	(NU) Soldereable Au w/ Ni barrier, (NT) Nickel with Solder				
Operating Temperature		-55°C to +150°C			
Storage Temperature		-65°C to +150°C			
Operating Voltage		100V Max.			
VSWR ²	DC to 10GHz	10 to 20GHz	20-40GHz		
	1.2:1	1.3:1	1.5:1		

¹ Soldered or Solderable Gold require a Nickel Barrier

² Achieving operating characteristics is dependent on attachment methods in order to minimize parasitics

SUBSTRATE CHARACTERISTICS

	Available	Dielectric	Thermal	Current Noise		
SUBSTRATE	Thickness	Constant @ 1MHz	Conductivity W/m• K	101Ω to $5k\Omega$	≤ 100Ω	
99.6% Alumina	0.005" - 0.025"	9.9	28	-35dB	-30dB	
Beryllium Oxide	0.010" - 0.025"	6.7	300	-35dB	-30dB	
Aluminum Nitride	0.010" - 0.025"	9.0	140 - 177	-35dB	-30dB	

RESISTOR CHARACTERISTICS

RESISTOR FILM	Passivation	Standard TCR	TCR Optional to:	
Tatalum Nitride	Ta_2O_5 (Self Passivating)	±150 ppm/°C	±25 ppm/°C	
NiChrome	SiO ₂	±25 ppm/°C	±5 ppm/°C	

PART NUMBER DESIGNATION

WAMT -	4	- <u>A</u>	<u> </u>	10000	F	— .	<u>NT</u>
STYLE	TYPE	SUBSTRATE	RESISTOR FILM	OHMIC VALUE	TOLERANCE		OPTION
WAMT	SEE	A = Alumina	T = Tantalum Nitride	5-Digit Number:	$D = \pm 0.5\%$	D	= ±5ppm/°C
HWMT	TABLE	B = BeO	N = NiChrome	1st 4 digits are significant	$F = \pm 1\%$	С	= ±10ppm/°C
		N = AlN		with "R" as decimal point	$G = \pm 2\%$	В	= ±25ppm/°C
				when required. 5th digit	$J = \pm 5\%$	А	= ±50ppm/°C
				represents number of zeros.	$K = \pm 10\%$	F	= ±100ppm/°C
						NU	= Soldereable Au w/ Ni barrier
FYAMDI F	WAMT- A - AN	I - 10000F - NT				NT	= Nickel w/Sn62 Solder

EXAMPLE: WAMT- 4 - AN - 10000F - NT

WAMT-4 Series, Alumina Substrate, NiChrome Resistor Film, 1k Ω , ±1% Tol., Nickel w/Sn62 Solder

MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

THIN FILM DIVISION ISO 9001 CERTIFIED 20 DAVID ROAD NORTH ATTLEBORO, MA 02760 EMAIL: msithin@Mini-SystemsInc.com WEB: www.Mini-SystemsInc.com PHONE: 508-695-0203 FAX:508-695-6076

NT3 = Nickel w/ SAC305 Solder

TR = Tape & Reel

SURFACE MOUNT MICROWAVE CHIP RESISTORS

			DIMENSIONS	-		Max.	I	POWER RATING	2
CASE SIZE	ТҮРЕ	L (±0.002") [±0.051mm]	W (±0.002") [±0.051mm]	T ³ (±0.002") [±0.051mm]	Resistance Range	Operating Frequency ¹ GHz	Alumina	AIN	BeO
0201	21	0.020" [0.508]	0.010" [0.254]	0.006" [0.152]	3Ω - 400Ω	20	50mW	200mW	400mW
0202	122	0.020" [0.508]	0.016" [0.406]	0.010" [0.254]	2Ω - 360Ω	20	125mW	500mW	1W
0202	7	0.020" [0.508]	0.020" [0.508]	0.010" [0.254]	2Ω - 400Ω	20	250mW	1W	2W
0302	32	0.030" [0.762]	0.020" [0.508]	0.010" [0.254]	2Ω - 500Ω	20	250mW	1W	2W
0402	1	0.040" [1.016]	0.020" [0.508]	0.010" [0.254]	2Ω - 1kΩ	20	250mW	1W	2W
0404	2	0.035" [0.889]	0.035" [0.889]	0.010" [0.254]	2Ω - 1kΩ	13	250mW	1W	2W
0502	115	0.050" [1.270]	0.025" [0.635]	0.010" [0.254]	2Ω - 2kΩ	13	250mW	1W	2W
0505	4	0.050" [1.270]	0.050" [1.270]	0.010" [0.254]	2Ω - 2kΩ	13	500mW	2W	4W
0603	8	0.055" [1.397]	0.025" [0.635]	0.010" [0.254]	2Ω - 2kΩ	13	250mW	1W	2W
0805	3	0.075" [1.905]	0.050" [1.270]	0.010" [0.254]	2Ω - 3kΩ	13	500mW	2W	4W
1005	6	0.100" [2.540]	0.050" [1.270]	0.010" [0.254]	5Ω - 5kΩ	13	500mW	2W	4W
1010	121	0.100" [2.540]	0.100" [2.540]	0.010" [0.254]	10Ω - 5kΩ	13	750mW	3W	6W
1206	5	0.126" [3.200]	0.063" [1.600]	0.010" [0.254]	2Ω - 5kΩ	13	750mW	3W	6W

¹ Achieving operating characteristics in this frequency range is dependent on attachment methods in order to minimize parasitics

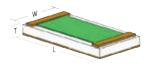
² Power rating at 70°C derated linearly to 0% at 150°C

³ Thickness does not include solder

PERFORMANCE SPECIFICATIONS

PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	2.5xWVDC(6.25xRATED POWER)MIL-PRF-55342, +25°C, 5 SEC	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
HIGH TEMP EXPOSURE	+150°C, 100HRS	± 0.20 MAX $\Delta R/R$	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
MOISTURE RESISTANCE	MIL-STD 202, METHOD 106	± 0.40 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	± 0.50 MAX $\Delta R/R$	± 0.10 MAX $\Delta R/R$

All WAMT, HWMT Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342



THIN FILM DIVISION

TOP CONTACT HIGH POWER CHIP RESISTORS

PTWB

Non-solderable gold OR Solderable gold with nickel barrier OR Nickel barrier pre-soldered

Mini-Systems, Inc. Wire Bondable High Power Chip Resistor series is constructed with high current density Thin Film materials to fit the rigorous demands that operating high power have on performance. Connection methods to associated circuitry are made through either wire bonding, conductive epoxy or soldering to the terminations.

GENERAL CHARACTERISTICS

Resistance Range	2Ω to $1k\Omega$			
Resistance Tolerance	±0.5% to ±10%			
Termination Material	tion Material (G) Non-Solderable Gold, (NU) Soldereable Au w/ Ni barrier, (NT) Nickel with Solder			
Backing Material	Bare Substrate (Standard), Gold (Optional)			
Operating Temperature	-55°C to +150°C			
Storage Temperature	-65°C to +150°C			
Operating Voltage	100 V Max.			
Insulation Resistance	$10^{12}\Omega$ Min.			

SUBSTRATE CHARACTERISTICS

	Available	Dielectric	Thermal	Current Noise		
SUBSTRATE	Thickness	Constant @ 1MHz	Conductivity W/m• K	101Ω to $1k\Omega$	≤ 100 Ω	
99.6% Alumina	0.005" - 0.025"	9.9	28	-35 dB	-30 dB	
Beryllium Oxide	0.010" - 0.025"	6.7	300	-30 dB	-20 dB	
Aluminum Nitride	0.010" - 0.025"	9.0	140 - 177	-30 dB	-20 dB	

RESISTOR CHARACTERISTICS

RESISTOR FILM	Passivation	TCR	
Tantalum Nitride	Ta ₂ O ₅ (SelfPassivating)	±150 ppm/°C	
NiChrome	SiO ₂	±25 ppm/°C	

PART NUMBER DESIGNATION

PTWB —	110	- A	T -	- 100R0	F -	- GGB
STYLE	TYPE	SUBSTRATE	RESISTOR FILM	OHMIC VALUE	TOLERANCE	OPTION
PTWB	SEE TABLE	A = Alumina B = BeO N = AlN	T = Tantalum Nitride N = NiChrome	5-Digit Number: 1st 4 digits are significant with "R" as decimal point when required. 5th digit represents number of zeros.	$\begin{array}{rcl} G &=& \pm 2\% \\ J &=& \pm 5\% \end{array}$	G = Gold Bond Pads GB = Gold Back NU = Soldereable Au w/ Ni barrier NT = Nickel w/ Sn62 Solder NT3 = Nickel w/SAC305 Solder TR = Tape and Reel

EXAMPLE: PTWB-110-AT-100R0F - GGB

PTWB-110 Series, Alumina, Tantalum Nitride, 100Ω, ±1% Tol., Non-Solderable Terminations, Gold Pads, Gold Back

WEB:

MINI SYSTEMS INC. MADE IN AMERICA **SINCE 1968**

THIN FILM DIVISION ISO 9001 CERTIFIED 20 DAVID ROAD NORTH ATTLEBORO, MA 02760 EMAIL: msithin@Mini-SystemsInc.com www.Mini-SystemsInc.com

PHONE: 508-695-0203 FAX:508-695-6076

8041 Rev. A

TOP CONTACT HIGH POWER CHIP RESISTORS

			DIMENSIONS				POWER RATING	
CASE SIZE	ТҮРЕ	L (±0.002") [±0.051mm]	W (±0.002") [±0.051mm]	T⁴ (±0.002") [±0.051mm]	RESISTANCE RANGE	Alumina	AIN ^{2,3}	BeO ^{2,3}
0201	21	0.020" [0.508]	0.010" [0.254]	0.006" [0.152]	2Ω - 1kΩ	100mW	400mW	800mW
0202	122	0.020" [0.508]	0.016" [0.406]	0.010" [0.152]	2Ω - 1kΩ	250mW	1W	2W
0202	7	0.020" [0.508]	0.020" [0.508]	0.010" [0.254]	2Ω - 1kΩ	250mW	1W	2W
0302	32	0.030" [0.762]	0.020" [0.508]	0.010" [0.254]	2Ω - 1kΩ	250mW	1W	2W
0402	110	0.037" [0.940]	0.017" [0.432]	0.010" [0.254]	2Ω - 1kΩ	500mW	2W	4W
0404	2	0.035" [0.889]	0.035" [0.889]	0.010" [0.254]	2Ω - 1kΩ	1W	2W	4W
0502	115	0.050" [1.270]	0.025" [0.635]	0.010" [0.254]	2Ω - 1kΩ	500mW	2W	4W
0505	112	0.050" [1.270]	0.050" [1.270]	0.010" [0.254]	2Ω - 1kΩ	1W	2.8W	5.6W
0603	63	0.060" [1.524]	0.030" [0.762]	0.010" [0.254]	2Ω - 1kΩ	1W	4W	8W
0805	3	0.075" [1.905]	0.050" [1.270]	0.010" [0.254]	2Ω - 1kΩ	1W	4W	8W
1005	120	0.100" [2.54]	0.050" [1.270]	0.010" [0.254]	2Ω - 1kΩ	2W	4W	8W
1010	121	0.100" [2.54]	0.100" [2.54]	0.010" [0.254]	2Ω - 1kΩ	2W	6W	12W
1206	5	0.126" [3.20]	0.063" [1.60]	0.010" [0.254]	2Ω - 1kΩ	2W	6W	12W
1505	9	0.153" [1.270]	0.050" [0.254]	0.010" [0.254]	2Ω - 1kΩ	2W	6W	12W

 $^{\rm 1}$ Power rating at 70°C derated linearly to 0% at 150°C

² Power ratings for resistors manufactured on AlN and BeO are based on adequate heat sinking to maintain the case temperature below 90°C

³ MSI recommends the gold back option for adequate heat sinking to maintain case temperature below 90°C

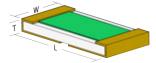
⁴ Thickness does not include solder

PERFORMANCE SPECIFICATIONS

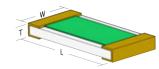
PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	2.5X RATED POWER, +25°C, 5 SEC	±0.25 MAX ΔR/R	±0.10 MAX ΔR/R
HIGH TEMP EXPOSURE	+150°C, 100HRS	± 0.20 MAX $\Delta R/R$	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
MOISTURE RESISTANCE	MIL-STD 202, METHOD 106	± 0.40 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	± 0.50 MAX $\Delta R/R$	±0.10 MAX ΔR/R

All PTWB Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342

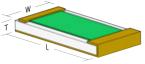
THIN FILM DIVISION


ISO 9001 CERTIFIED 20 DAVID ROAD NORTH ATTLEBORO, MA 02760 EMAIL: msithin@Mini-SystemsInc.com WEB: www.Mini-SystemsInc.com PHONE: 508-695-0203 FAX:508-695-6076

18


SURFACE MOUNT HIGH POWER CHIP RESISTORS

Extended Wrap (PTSM)



Solderable gold with nickel barrier OR Nickel barrier pre-soldered

Wrap Around (PTSM)

Solderable gold with nickel barrier OR Nickel barrier pre-soldered Half Wrap (PTHW)

Solderable gold with nickel barrier OR Nickel barrier pre-soldered Isolated pad is wire bondable

Mini-Systems, Inc. **Surface Mount High Power Chip Resistor** series is constructed with **high current density** Thin Film materials to fit the rigorous demands that operating **high power** have on performance. All sizes are offered in wrap around and half wrap styles to meet your design needs. Connection methods to associated circuitry are made through either wire bonding, conductive epoxy or soldering to the terminations.

GENERAL CHARACTERISTICS

Resistance Range	2Ω to $1k\Omega$
Resistance Tolerance	±0.5% to ±10%
Termination Material	(NU) Solderable Gold with Nickel Barrier, (NT) Nickel with Solder
Operating Temperature	-55°C to +150°C
Storage Temperature	-65°C to +150°C
Operating Voltage	100 V Max.
Insulation Resistance	$10^{12}\Omega$ Min.

SUBSTRATE CHARACTERISTICS

	Available	Dielectric	Thermal	Current Noise		
SUBSTRATE	Thickness	Constant @ 1MHz	Conductivity W/m• K	101Ω to $1k\Omega$	≤ 100 Ω	
99.6% Alumina	0.005" - 0.025"	9.9	28	-35 dB	-30 dB	
Beryllium Oxide	0.010" - 0.025"	6.7	300	-30 dB	-20 dB	
Aluminum Nitride	0.010" - 0.025"	9.0	140 - 177	-30 dB	-20 dB	

RESISTOR CHARACTERISTICS

RESISTOR FILM	Passivation	TCR	
Tantalum Nitride	Ta_2O_5 (SelfPassivating)	±150 ppm/°C	
NiChrome	SiO ₂	±25 ppm/°C	

PART NUMBER DESIGNATION

PTSM — STYLE	3 TYPE	- A SUBSTRATE	$-\frac{T}{RESISTOR FILM}$	100R0 OHMIC VALUE	F TOLERANCE		NT3 OPTION
PTSM PTHW	SEE TABLE	A = Alumina B = BeO N = AlN	T = Tantalum Nitride N = NiChrome	5-Digit Number: 1st 4 digits are significant with "R" as decimal point when required. 5th digit represents number of zeros.	$G = \pm 2\%$ J = \pm 5%	NU NT NT3 K TR	 Solderable Au w/ Ni Barrier Nickel w/Sn62 Solder Nickel w/ SAC305 Solder Extended Wrap Tape and Reel

EXAMPLE: PTSM-3-AT-100R0F - NT3

PTSM-3 Series, Alumina, Tantalum Nitride, 100Ω, ±1% Tol., Nickel with SAC305 Solder

MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

THIN FILM DIVISION ISO 9001 CERTIFIED

SURFACE MOUNT HIGH POWER CHIP RESISTORS

			DIMENSIONS				POWER RATING ¹	L
CASE SIZE	ТҮРЕ	L (±0.002") [±0.051mm]	W (±0.002") [±0.051mm]	T ⁴ (±0.002") [±0.051mm]	RESISTANCE RANGE	Alumina	AIN ^{2,3}	Be0 ^{2,3}
0201	21	0.020" [0.508]	0.010" [0.254]	0.006" [0.152]	2Ω - 1kΩ	100mW	400mW	800mW
0202	122	0.020" [0.508]	0.016" [0.406]	0.010" [0.152]	2Ω - 1kΩ	250mW	1W	2W
0202	7	0.020" [0.508]	0.020" [0.508]	0.010" [0.254]	2Ω - 1kΩ	250mW	1W	2W
0302	32	0.030" [0.762]	0.020" [0.508]	0.010" [0.254]	2Ω - 1kΩ	250mW	1W	2W
0402	1	0.040" [1.016]	0.020" [0.508]	0.010" [0.254]	2Ω - 1kΩ	500mW	2W	4W
0404	2	0.035" [0.889]	0.035" [0.889]	0.010" [0.254]	2Ω - 1kΩ	1W	2W	4W
0502	115	0.050" [1.270]	0.025" [0.635]	0.010" [0.254]	2Ω - 1kΩ	500mW	2W	4W
0505	4	0.050" [1.270]	0.050" [1.270]	0.010" [0.254]	2Ω - 1kΩ	1W	2.8W	5.6W
0603	63	0.060" [1.524]	0.030" [0.762]	0.010" [0.254]	2Ω - 1kΩ	1W	4W	8W
0805	3	0.075" [1.905]	0.050" [1.270]	0.010" [0.254]	2Ω - 1kΩ	1W	4W	8W
1005	6	0.100" [2.54]	0.050" [1.270]	0.010" [0.254]	2Ω - 1kΩ	2W	4W	8W
1010	121	0.100" [2.54]	0.100" [2.54]	0.010" [0.254]	2Ω - 1kΩ	2W	6W	12W
1206	5	0.126" [3.20]	0.063" [1.60]	0.010" [0.254]	2Ω - 1kΩ	2W	6W	12W
1505	9	0.153" [1.270]	0.050" [0.254]	0.010" [0.254]	2Ω - 1kΩ	2W	6W	12W

¹ Power rating at 70°C derated linearly to 0% at 150°C

² Power ratings for resistors manufactured on AlN and BeO are based on adequate heat sinking to maintain the case temperature below 90°C

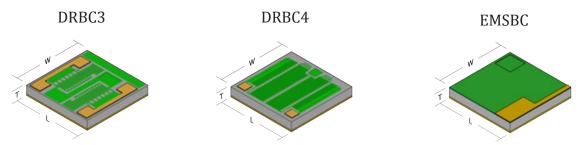
³ MSI recommends the extended wrap, or half wrap options for adequate heat sinking to maintain case temperature below 90°C

⁴ Thickness does not include solder

PERFORMANCE SPECIFICATIONS

PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	2.5X RATED POWER, +25°C, 5 SEC	±0.25 MAX ΔR/R	±0.10 MAX ΔR/R
HIGH TEMP EXPOSURE	+150°C, 100HRS	± 0.20 MAX $\Delta R/R$	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
MOISTURE RESISTANCE	MIL-STD 202, METHOD 106	± 0.40 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	± 0.50 MAX $\Delta R/R$	±0.10 MAX ΔR/R

All PTSM, PTHW Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342


8041 Rev. A

THIN FILM DIVISION ISO 9001 CERTIFIED 20 DAVID ROAD NORTH ATTLEBORO, MA 02760 EMAIL: msithin@Mini-SystemsInc.com

www.Mini-SystemsInc.com

BACK CONTACT CHIP RESISTORS

Mini-Systems, Inc. **Back Contact chip resistors** offer the **high stability**, **low noise and low TCR** of Mini-Systems proven Thin Film technology while providing the design engineer with a space saving alternative in hybrid designs. Each Back Contact Resistor requires only a **single wire bond to the top** side of the chip with the bottom connection made by eutectic or conductive epoxy attachment to associated circuitry. The EMSBC configurations are single resistors available in several case sizes and a wide resistance range. The DRBC configuration offers **two resistors** on a single chip and is ideal for use in applications where divider networks with closely matched tolerances and TCR are critical.

GENERAL CHARACTERISTICS

Resistan	ce Range	5Ω to $70 M\Omega^1$		
Resistor	Material	Tantalum Nitride		
Substrate	e Material	Silicon		
Passi	vation	Ta_2O_5 (Self Passivating)		
Resistance	e Tolerance	±0.05% to ±10%		
Terminatio	on Material	Aluminum or Gold		
Termina	ition Size	0.0035" Square Min Value Dependent		
Operating Temperature		-55°C to +125°C		
Storage Temperature		-65°C to +150°C		
Insulation	Resistance	10 ¹² Ω Min.		
Dielectric	Breakdown	400V Min.		
Operatin	ig Voltage	100V Max.		
Thermal Condu	ictivity (W/m•K)	149 (Silicon) 1.38 (12kÅ SiO ₂)		
T	CR	±150 ppm/°C (Standard) Optional to: ±100 ppm/°C		
TCR Tracking (Du	al Resistors Only)	±2ppm/°C		
Current Noise	101Ω to 250kΩ	-35dB		
	≤ 100Ω > 250kΩ	-20dB		

¹ Consult Engineering if lower valued resistors are required

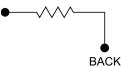
PART NUMBER DESIGNATION

EMSBC – STYLE EMSBC	- <u>110</u> - TYPE See Tables	$-\frac{S}{SUBSTRATE}$ S = Silicon	T – RESISTOR FILM T = Tantalum	300R0 / 500R0 ² - 10001 OHMIC VALUE 5-Digit Number:	$\frac{\mathbf{F}}{\mathbf{TOLERANCE}} - \mathbf{O} = 0.05\%$	$\frac{\mathbf{RN}}{\mathbf{RATIO}} - \mathbf{RA} = \pm 0.01\%$	$\frac{E}{0PTION}$ $F = \pm 100 ppm/°C$
DRBC			Nitride	1st 4 digits are significant with "R" as decimal point when required. 5th digit represents number of zeros.	B = 0.1% C = 0.25% D = 0.5%	$RB = \pm 0.05\%$ $RC = \pm 0.10\%$ $RE = \pm 0.25\%$ $RD = \pm 0.50\%$ $RG = \pm 2\%$ $RN = No Ratio$	E = Aluminum Bond Pads G = Gold Bond Pads TR = Tape & Reel

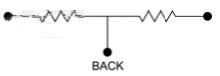
EXAMPLE: EMSBC-110-ST-10001F-E

EMSBC -110 Series, Silicon, Tantalum, 10kΩ ±1% Tol., ±150 ppm/°C, Aluminum Bond Pads

 2 Use for Dual Resistors Only - (R1 \leq R2)


MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

THIN FILM DIVISION



BACK CONTACT CHIP RESISTORS

Single Resistor

Dual Resistor

SINGLE RESISTOR BACK CONTACT SERIES

			DIMENSIONS			RESISTANCE RA	NGE	
CASE SIZE	STYLE EMSBC	L (±0.003") [±0.076mm]	W (±0.003") [±0.076mm]	T (±0.002") [±0.051mm]	MIN	MAX OPT TCR ±100ppm/°C	MAX STD TCR ±150ppm/°C	POWER RATING ¹
0201	21	0.020" [0.508]	0.010" [0.254]	0.006" [0.152]	5Ω	60kΩ	300kΩ	50mW
0202	1	0.015" [0.381]	0.015" [0.381]	0.010" [0.254]	5Ω	200kΩ	1MΩ	50mW
0202	122	0.020" [0.508]	0.016" [0.406]	0.010" [0.254]	5Ω	200kΩ	1MΩ	125mW
0202	2	0.020" [0.508]	0.020" [0.508]	0.010" [0.254]	5Ω	320kΩ	1.6MΩ	250mW
0302	32	0.030" [0.762]	0.020" [0.508]	0.010" [0.254]	5Ω	400kΩ	2MΩ	250mW
0303	3	0.030" [0.762]	0.030" [0.762]	0.010" [0.254]	5Ω	800kΩ	4MΩ	250mW
0402	110	0.037" [0.940]	0.017" [0.432]	0.010" [0.254]	5Ω	600kΩ	3MΩ	125mW
0404	35	0.035" [0.889]	0.035" [0.889]	0.010" [0.254]	5Ω	1.3MΩ	6.5MΩ	250mW
0404	4	0.040" [1.060]	0.040" [1.060]	0.010" [0.254]	10Ω	2.4MΩ	11MΩ	350mW
0502	115	0.050" [1.270]	0.025" [0.635]	0.010" [0.254]	5Ω	1.3MΩ	6.5MΩ	250mW
0505	112	0.050" [1.270]	0.050" [1.270]	0.010" [0.254]	5Ω	2.8MΩ	14MΩ	500mW
0603	63	0.060" [1.524]	0.030" [0.762]	0.010" [0.254]	5Ω	2.4MΩ	11MΩ	500mW
0606	6	0.060" [1.524]	0.060" [1.524]	0.010" [0.254]	20Ω	8MΩ	40ΜΩ	500mW
1005	120	0.100" [2.540]	0.050" [1.270]	0.010" [0.254]	5Ω	9MΩ	45ΜΩ	500mW
1010	121	0.100" [2.540]	0.100" [2.540]	0.010" [0.254]	10Ω	14MΩ	70MΩ	750mW
1206	126	0.126" [3.200]	0.063" [1.524]	0.010" [0.254]	10Ω	10MΩ	50MΩ	750mW

MSBC2 will continue to be available, size and characteristics match EMSBC2. Available with aluminum bond pads only

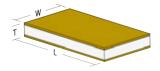
¹ Power Rating at 70°C Derated Linearly to 0% at 150°C

 $^{\scriptscriptstyle 2}$ Consult Engineering if lower valued resistors are required

DUAL RESISTOR BACK CONTACT SERIES

STYLE		DIMENSIONS			RESIS	DOWED		
Case Size	DRBC	L (±0.003") [±0.076mm]	W (±0.003") [±0.076mm]	T (±0.002") [±0.051mm]	MIN	MAX OPT TCR ±100ppm/°C	MAX STD TCR ±150ppm/°C	POWER RATING ¹ Per Resistor
0303	3	0.030" [0.762]	0.030" [0.762]	0.010" [0.254]	5Ω	400kΩ	2ΜΩ	125mW
0404	4	0.040" [1.060]	0.040" [1.060]	0.010" [0.254]	5Ω	1.2MΩ	6MΩ	125mW

¹ Power Rating at 70°C Derated Linearly to 0% at 150°C


² Consult Engineering if lower valued resistors are required

PERFORMANCE SPECIFICATIONS

PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	2.5xWVDC(6.25xRATED POWER)MIL-PRF-55342, +25°C, 5 SEC	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
HIGH TEMP EXPOSURE	+150°C, 100HRS	± 0.20 MAX $\Delta R/R$	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
MOISTURE RESISTANCE	MIL-STD 202, METHOD 106	± 0.40 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	± 0.50 MAX $\Delta R/R$	±0.10 MAX ΔR/R

All EMSBC, DRBC Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342

THIN FILM JUMPERS

MSJC SERIES

Mini-Systems, Inc. **MSJC Series Chip Jumpers** are ideal for use as zero ohm jumpers, bonding islands, and stand-offs for specific applications. Available in a variety of standard, as well as custom sizes for your applications.

MSJC SERIES

			DIMENSIONS				
CASE SIZE	TVPF		W (±0.003") [±0.076mm]	T (±0.003") [±0.076mm]	MAX RESISTANCE (mΩ)		
0101	1	0.010" [0.254]	0.010" [0.254]	0.005" [0.152]	10		
0201	21	0.020" [0.508]	0.010" [0.254]	0.005" [0.152]	20		
0202	2	0.020" [0.508]	0.020" [0.508]	0.010" [0.254]	10		
0303	3	0.030" [0.762]	0.030" [0.762]	0.010" [0.254]	10		
0303	35	0.035" [0.889]	0.035" [0.889]	0.010" [0.254]	10		
0404	4	0.040" [1.060]	0.040" [1.060]	0.010" [0.254]	10		
0505	5	0.050" [1.270]	0.050" [1.270]	0.010" [0.254]	10		
0805	75	0.075" [1.905]	0.050" [0.889]	0.010" [0.254]	15		
1010	10	0.100" [2.540]	0.100" [2.540]	0.010" [0.254]	10		

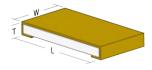
CUSTOM SIZES AVAILABLE, CONSULT SALES

GENERAL CHARACTERISTICS

Substrate Materials	99.6% Alumina, other substrate materials available upon request				
Metallization	tion Gold				
Available Thickness	0.005", 0.010", 0.015", 0.020", 0.025"				
Resistance	10 Milliohms per square, typical				

MSJC PART NUMBER DESIGNATION

MSJC	<u> </u>	- <u>AT</u> -	- <u>GB10</u>
STYLE	ТҮРЕ	MATERIAL	OPTION
MSJC	See Table	AT = Alumina Substrate	$\begin{array}{llllllllllllllllllllllllllllllllllll$
EXAMPLE: MSJC-10-AT-GB10 MSJC-10, 0.100" x 0.100",	0.010" Thick Alumin	na with Two Sided Gold	d



MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968 THIN FILM DIVISION ISO 9001 CERTIFIED 20 DAVID ROAD NORTH ATTLEBORO, MA 02760 EMAIL: msithin@Mini-SystemsInc.com WEB: www.Mini-SystemsInc.com

PHONE: 508-695-0203 FAX:508-695-6076

THIN FILM JUMPERS

WAJC SERIES

Mini-Systems, Inc. **WAJC Series Chip Jumpers** with nickel barrier are ideal for use as zero ohm jumpers, bonding islands, and stand-offs for specific applications. Available in a variety of standard, as well as custom sizes for your applications.

WAJC SERIES

			DIMENSIONS		MAX
CASE SIZE	ТҮРЕ	L (±0.003") [±0.076mm]	W (±0.003") [±0.076mm]	T¹ (±0.003") [±0.076mm]	RESISTANCE (mΩ)
0201	21	0.020" [0.508]	0.010" [0.254]	0.005" [0.152]	20
0202	7	0.020" [0.508]	0.020" [0.508]	0.010" [0.254]	10
0402	1	0.040" [1.016]	0.020" [0.508]	0.010" [0.254]	20
0404	2	0.035" [0.889]	0.035" [0.889]	0.010" [0.254]	10
0502	8	0.055" [1.397]	0.025" [0.635]	0.010" [0.254]	20
0505	4	0.050" [1.270]	0.050" [1.270]	0.010" [0.254]	10
0805	3	0.075" [1.905]	0.050" [1.270]	0.010" [0.254]	15
1005	6	0.100" [2.540]	0.050" [1.270]	0.010" [0.254]	20
1206	5	0.126" [3.200]	0.063" [1.600]	0.010" [0.254]	20
1505	9	0.153" [3.886]	0.050" [1.270]	0.010" [0.254]	30
¹ Thickness does	not include solder			3	

CUSTOM SIZES AVAILABLE, CONSULT SALES

GENERAL CHARACTERISTICS

Substrate Material	99.6% Alumina, other substrate materials available upon request				
Metallization	ization (NU) Soldereable Au w/ Ni barrier, (NT) Nickel with Solder				
Available Thickness ¹	0.005", 0.010", 0.015", 0.020", 0.025"				
Resistance	10 Milliohms per square, typical				

¹ Thickness does not include solder

WAJC PART NUMBER DESIGNATION

WAJC -		- <u>AT</u> —	NT10
STYLE	TYPE	MATERIAL	OPTION
WAJC	See Table	AT = Alumina Substrate	NU = Soldereable Au w/ Ni barrier NT = Nickel with Sn62 Solder NT3= Nickel with SAC305 Solder 5 = 0.005" Thick 10 = 0.010" Thick 15 = 0.015" Thick
	m1 · 1 41 ·	XAY 1	20 = 0.020" Thick 25 = 0.025" Thick
	STYLE WAJC 00", 0.010"	WAJC See Table	WAJC See AT = Alumina

THIN FILM ATTENUATORS

GENERAL CHARACTERISTICS

Resistor Material	Tantalum Nitride, NiChrome				
Bond Pads	Gold Pads, Wire or Ribbon Bondable				
Backside Surface	Bare Substrate (Standard), Gold (Optional)				
Attenuation Ranges	0dB Through -24dB; (0.5dB Steps Available)				
DC Attenuation Tolerance	±0.1dB (-0.5dB to -6dB), ±0.2dB (-0.5dB to -24dB)				
Impedance	50Ω				
Frequency Range	DC Through 40 GHz				
Current Noise	-20dB Typical				
Operating Temperature	-55°C to +150°C				
Storage Temperature	-65°C to +150°C				
VSWR ¹	DC to 10GHz	10GHz to 20GHz	20GHz to 40GHz		
VSWR-	1.2:1	1.3:1	1.5:1		

¹ Achieving operating characteristics is dependent on attachment methods in order to minimize parasitics

SUBSTRATE CHARACTERISTICS

SUBSTRATE MATERIAL	Dielectric Constant @ 1MHz	Thermal Conductivity W/m• K
99.6% Alumina	9.9	28
Quartz (Fused Silica)	3.75	1.3
Beryllium Oxide	6.7	300
Aluminum Nitride ²	9.0	140 - 177

² Discrete Elements Only

RESISTOR CHARACTERISTICS

RESISTOR FILM	Passivation	Standard TCR	TCR Optional To
Tantalum Nitride	Ta ₂ O ₅ (Self Passivating)	±150 ppm/°C	
NiChrome	SiO ₂	±25 ppm/°C	±5 ppm/°C

PART NUMBER DESIGNATION

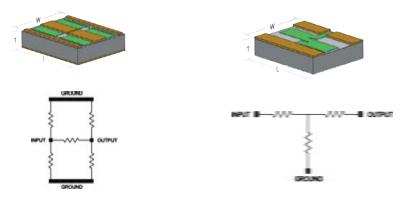
MSAT STYLE	— <u>21</u> <u>TYPE</u>	- A SUBSTRATE	$\frac{T}{RESISTOR FILM} - \underline{\qquad}$	-5dB dB	G	G G OPTION
MSAT	SEE TABLE	$A = Alumina$ $B = BeO$ $N = AlN^{3}$ $Q = Quartz$	T = Tantalum Nitride N = NiChrome	0dB-24dB	$F = \pm 0.1 dB$ G = \pm 0.2 dB	$C = \pm 10 \text{ppm/°C}$ $D = \pm 5 \text{ppm/°C}$ G = Wire Bondable Gold GB = Gold Back TR = Tape & Reel

EXAMPLE: MSAT-21-AT - 5dBG - G

MSAT-21 Series, Alumina, Tantalum Nitride, -5dB, ±0.2dB, Wire Bondable Gold

³ AlN Substrate is not available on Lumped Element Attenuators

MADE IN AMERICA SINCE 1968


THIN FILM DIVISION ISO 9001 CERTIFIED 20 DAVID ROAD

TOP CONTACT THIN FILM ATTENUATORS

MSAT 5, 21

Mini-Systems, Inc. **MSAT** series discrete element Thin Film **chip attenuators** provide the design engineer with attenuators that are very accurate over operating frequencies from **DC through 40 GHz**. They offer the **low noise**, **low stray capacitance and tight tolerance** of Mini-Systems, Inc. Thin Film materials in compact sizes that make them ideal for applications where small footprints are required. MSAT series is offered in balanced pi or T-type styles.

MSAT SERIES

CASE			DIMENSIONS			POWER RATING ¹		ATTENUATOR			
SIZE	TYPE	LAYOUT	L (±0.003") [±0.076mm]	W (±0.003") [±0.076mm]	T (±0.003") [±0.076mm]	Quartz	Al ₂ O ₃	AIN	BeO	ТҮРЕ	ELEMENT TYPE
0806	21	Top Contact	0.077" [1.956]	0.061" [1.549]	0.015" [0.381]	50 mW	250 mW	Not Available	2 W	Т	Lumped
1008	1	Top Contact	0.100" [2.540]	0.080" [2.032]	0.010" [0.254]	25 mW	125 mW	500 mW	1 W	Pi	Discrete
1512	5	Top Contact	0.148" [3.759]	0.122" [3.099]	0.025" [0.635]	400 mW	2 W	Not Available	8 W	Т	Lumped

¹ Power Rating at 70°C Derated Linearly to 0% at 150°C

PERFORMANCE SPECIFICATIONS

PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
HIGH TEMP EXPOSURE	+150°C, 100HRS	±0.20 MAX ΔR/R	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	±0.50 MAX ΔR/R	±0.10 MAX ΔR/R

All MSAT Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342

MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

THIN FILM DIVISION

THIN FILM ATTENUATORS

GENERAL CHARACTERISTICS

Resistor Material	Tantalum Nitride, NiChrome				
Bond Pads	(NU) Solderable Gold with Nickel Barrier, (NT) Nickel with Solder				
Attenuation Ranges	0dB Through -24dB; (0.5dB Steps Available)				
DC Attenuation Accuracy	±0.1dB (-0.5dB to -6dB), ±0.2dB (-0.5dB to -24dB)				
Impedance	50Ω				
Frequency Range	DC Through 40 GHz				
Current Noise	-20dB Typical				
Operating Temperature		-55°C to +150°C			
Storage Temperature	-65°C to +150°C				
VSWR ¹	DC to 10GHz	10GHz to 20GHz	20GHz to 40GHz		
V3WK	1.2:1	1.3:1	1.5:1		

¹ Achieving operating characteristics is dependent on attachment methods in order to minimize parasitics

SUBSTRATE CHARACTERISTICS

SUBSTRATE MATERIAL	Dielectric Constant @ 1MHz	Thermal Conductivity W/m• K	
99.6% Alumina	9.9	28	
Beryllium Oxide ¹	6.7	300	
Aluminum Nitride ²	9.0	140 - 177	

¹ Not Available on MSAT 3, 7, or 23

² Discrete Elements Only

RESISTOR CHARACTERISTICS

RESISTOR FILM	Passivation	Standard TCR	TCR Optional To
Tantalum Nitride	Ta_2O_5 (Self Passivating)	±150 ppm/°C	
NiChrome	SiO ₂	±25 ppm/°C	±5 ppm/°C

PART NUMBER DESIGNATION

MSAT	— <u>23</u>	- <u>A</u>	$\frac{T}{RESISTOR FILM} - \underline{\qquad}$	-5dB	G	- NT
STYLE	<u>TYPE</u>	SUBSTRATE		dB	TOLERANCE	OPTION
MSAT	SEE TABLE	A = Alumina B = BeO3 N = AlN4	T = Tantalum Nitride N = NiChrome	0dB-24dB	$F = \pm 0.1 dB$ $G = \pm 0.2 dB$	C = ±10ppm/°C D = ±5ppm/°C NU = Solderable Au w/ Ni Barrier NT = Nickel w/Sn62 Solder

EXAMPLE: MSAT-23-AT - 5dBG - NT

MSAT-23 Series, Alumina, Tantalum Nitride, -5dB, ±0.2dB, Nickel w/Sn62 Solder

³ BeO Substrate is not available on MSAT 3, 7, or 23

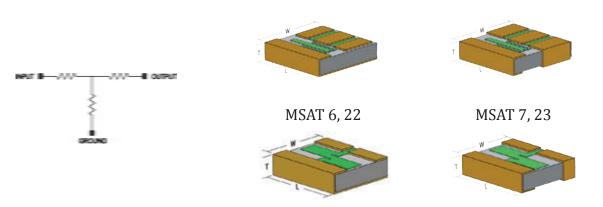
⁴ AlN Substrate is not available on Lumped Element Attenuators

MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

THIN FILM DIVISION 20 DAVID ROAD

NORTH ATTLEBORO, MA 02760

EMAIL:msithin@Mini-SystemsInc.comWEB:www.Mini-SystemsInc.comPHONE:508-695-0203 FAX:508-695-6076


NT3= Nickel w/SAC305 Solder

TR = Tape & Reel

SURFACE MOUNT THIN FILM ATTENUATORS

MSAT 2, 10

MSAT 3

Mini-Systems, Inc. **MSAT** series discrete element Thin Film **chip attenuators** provide the design engineer with attenuators that are very accurate over operating frequencies from **DC through 40 GHz**. They offer the **low noise**, **low stray capacitance and tight tolerance** of Mini-Systems, Inc. Thin Film materials in compact sizes that make them ideal for applications where small footprints are required.

MSAT SERIES

CASE			I	DIMENSION	S		POWER I	RATING ¹		ATTENUATOR	
SIZE	TYPE	LAYOUT	L (±0.003") [±0.076mm]	W (±0.003") [±0.076mm]	T ² (±0.003") [±0.076mm]	Quartz	Al ₂ 0 ₃	AIN	BeO	ТҮРЕ	ELEMENT TYPE
0505	2	Half Wrap	0.050" [1.270]	0.050" [1.270]	0.020" [0.508]	Not Available	250 mW	1 W	2 W	Т	Discrete
0505	3	Surface Mount	0.050" [1.270]	0.050" [1.270]	0.020" [0.508]	Not Available	250 mW	1 W	Not Available	Т	Discrete
0505	10	Half Wrap	0.050" [1.270]	0.050" [1.270]	0.010" [0.254]	Not Available	250 mW	1 W	2 W	Т	Discrete
0806	22	Half Wrap	0.077" [1.956]	0.061" [1.549]	0.015" [0.381]	Not Available	250 mW	Not Available	2 W	Т	Lumped
0806	23	Surface Mount	0.077" [1.956]	0.061" [1.549]	0.015" [0.381]	Not Available	250 mW	Not Available	Not Available	Т	Lumped
1512	6	Half Wrap	0.148" [3.759]	0.122" [3.099]	0.025" [0.635]	Not Available	2 W	Not Available	8 W	Т	Lumped
1512	7	Surface Mount	0.148" [3.759]	0.122" [3.099]	0.025" [0.635]	Not Available	2 W	Not Available	Not Available	Т	Lumped

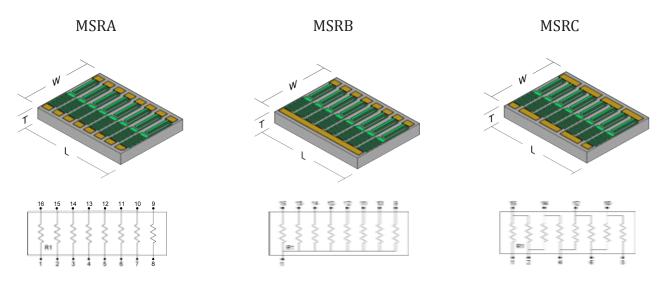
¹ Power Rating at 70°C Derated Linearly to 0% at 150°C

² Thickness does not include solder

PERFORMANCE SPECIFICATIONS

PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
HIGH TEMP EXPOSURE	+150°C, 100HRS	±0.20 MAX ΔR/R	±0.03 MAX ΔR/R
THERMAL SHOCK MIL-STD 202, METHOD 107		± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	± 0.50 MAX $\Delta R/R$	±0.10 MAX ΔR/R

All MSAT Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342



THIN FILM DIVISION 20 DAVID ROAD NORTH ATTLEBORO, MA 02760

EMAIL:msithin@Mini-SystemsInc.comWEB:www.Mini-SystemsInc.comPHONE:508-695-0203 FAX:508-695-6076

THIN FILM RESISTOR ARRAYS

Mini-Systems, Inc. **Resistor Arrays** are ideal for the hybrid designer seeking a SIP or DIP configuration in chip form. This series has three configurations, MSRA - **isolated**, MSRB - **common bussed**, and MSRC - **series array**. Arrays are offered in 3 to 12 resistor combinations. All resistors are the same value and tolerance. They feature excellent resistance ratio tracking, **low T.C.R., and T.C. tracking**, and are of optimum use when space is a premium. Custom configurations available upon request.

DIMENSIONS

					Dimer	isions				
# Resistors	3	4	5	6	7	8	9	10	11	12
L (±0.003") [±0.076mm]	0.040" [1.016]	0.050" [1.270]	0.060" [1.524]	0.070" [1.778]	0.080" [2.032]	0.090" [2.286]	0.100" [2.54]	0.110" [2.794]	0.120" [3.048]	0.130" [3.302]
W (±0.003") [±0.076mm]	0.060" [1.524]									
T (±0.002") [±0.051mm]	0.010" [0.254]									

PART NUMBER DESIGNATION

MSRA	<u> </u>	- S	N	- 10001	F	<u>RA</u> -	- E
STYLE	# Res	SUBSTRATE	RESISTOR FILM	OHMIC VALUE	TOLERANCE	RATIO	OPTION
MSRA MSRB MSRC	3-12	A = Alumina S = Silicon	T = Tantalum Nitride N = NiChrome	5-Digit Number: 1st 4 digits are significant with "R" as decimal point when required. 5th digit represents number of zeros.	$B = \pm 0.1\%$ D = ±0.5%	$\begin{array}{l} {\rm RA} = \pm 0.01\% \\ {\rm RB} = \pm 0.05\% \\ {\rm RC} = \pm 0.10\% \\ {\rm RE} = \pm 0.25\% \\ {\rm RD} = \pm 0.50\% \\ {\rm RF} = \pm 1\% \\ {\rm RG} = \pm 2\% \\ {\rm RN} = {\rm No \ Ratio} \end{array}$	$D = \pm 5ppm/^{\circ}C$ $C = \pm 10ppm/^{\circ}C$ $B = \pm 25ppm/^{\circ}C$ $A = \pm 50ppm/^{\circ}C$ $F = \pm 100ppm/^{\circ}C$ $E = Aluminum Pads$ $G = Gold Bond Pads$ $GB = Gold Back$

EXAMPLE: MSRA-8-SN-10001F-RA-E

MSRA Style - 8 Resistors, Silicon, NiChrome Resistor Element $10k\Omega$ each resistor, $\pm 1\%$ Tol., $\pm 0.01\%$ Ratio, Aluminum Bond Pads

MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

THIN FILM DIVISION

ISO 9001 CERTIFIED 20 DAVID ROAD NORTH ATTLEBORO, MA 02760 EMAIL: msithin@Mini-SystemsInc.com WEB: www.Mini-SystemsInc.com PHONE: 508-695-0203 FAX:508-695-6076 RoHS Compliant

THIN FILM RESISTOR ARRAYS

GENERAL CHARACTERISTICS

Resistance Range	5Ω to 1MΩ			
Resistance Tolerance	±0.01% to ±10%			
Ratio Tolerance	Available to ±0.01%			
Termination Material	Gold (Standard) Aluminum (Optional)			
Termination Size	0.0035" Square Min Value Dependent			
Backing Material	Bare Substrate (Standard) Gold (Optional)			
Operating Temperature	-55°C to +150°C			
Storage Temperature	-65°C to +150°C			
Insulation Resistance	$10^{12}\Omega$ Min.			
Dielectric Breakdown	400V Min.			
Operating Frequency	DC to 500MHz			
Operating Voltage	100 V			

SUBSTRATE CHARACTERISTICS

CUDCTDATE	Resistance	D 1	Dielectric	Thermal	Curren	t Noise
SUBSTRATE MATERIAL	Range (Per Resistor)	Power ¹ Rating	Constant @ 1MHz	Conductivity W/m•K	101Ω to 250kΩ	≤ 100Ω > 250kΩ
99.6% Alumina	5Ω to 100kΩ	50 mW / Res	9.9	28	-35 dB	-30 dB
Silicon (with 12kÅ SiO ₂)	5Ω to $1M\Omega$	50 mW / Res	N/A (SiO ₂ 3.9)	149 (SiO ₂ 1.38)	-40 dB	-30 dB

¹ Power Rating at 70°C Derated Linearly to 0% at 150°C

RESISTOR CHARACTERISTICS

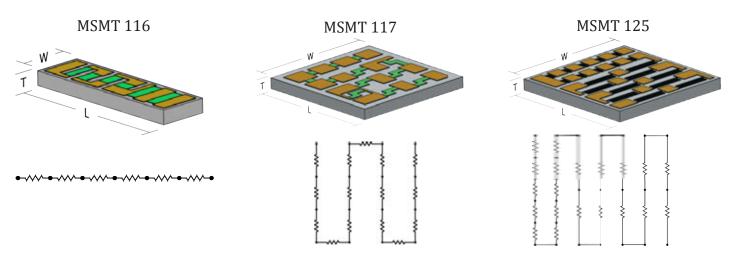
RESISTOR FILM	Passivation	Standard TCR	TCR Optional To	TCR Tracking	
Tantalum Nitride	Ta ₂ O ₅ (Self Passivating)	±150 ppm/°C	±10 ppm/°C	±2ppm/°C	
NiChrome	SiO ₂	±25 ppm/°C	±5 ppm/°C	±2ppm/°C	

PERFORMANCE SPECIFICATIONS

PROPERTY TEST CONDITION		REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	2.5xWVDC(6.25xRATED POWER)MIL-PRF-55342, +25°C, 5 SEC	±0.25 MAX ΔR/R	±0.10 MAX ΔR/R
HIGH TEMP EXPOSURE	+150°C, 100HRS	± 0.20 MAX $\Delta R/R$	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
MOISTURE RESISTANCE	MIL-STD 202, METHOD 106	± 0.40 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	±0.50 MAX ΔR/R	±0.10 MAX ΔR/R

All MSRA, MSRB, MSRC Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342

8041 Rev. A


THIN FILM DIVISION

ISO 9001 CERTIFIED 20 DAVID ROAD NORTH ATTLEBORO, MA 02760 EMAIL: msithin@Mini-SystemsInc.com WEB: www.Mini-SystemsInc.com PHONE: 508-695-0203 FAX:508-695-6076

30

MULTI-TAP RESISTORS

Mini-Systems, Inc. **MSMT** series chip Multi-Tap resistor arrays provide the design engineer a wide range of resistance values on a single chip. These chips are often used in circuits where **precision adjustments** are required. Connection to associated circuitry is accomplished using wire bonding. The MSMT series offers **high stability**, **low noise**, **and low T.C.R.** of Mini-Systems, Inc. proven thin film technology.

RESISTANCE DISTRIBUTION

MSMT116*	(R1 = R2 = Rt / 24), (R3 = Rt / 12), (R4 = R5 = Rt / 4.8), (R6 = Rt / 2.4)
MSMT117* (R1 to R7 = Rt / 8), (R8 to R12 = Rt / 40)	
MSMT125*	(R1 to R10 = Rt / 110), (R11 to R20 = Rt / 11)

Rt = Total Resistance

*= Individual values are by design

DIMENSIONS

			DIMENSIONS			RESISTAN		
CASE SIZE	STYLE	ТҮРЕ	L (±0.003") [±0.076mm]	W (±0.003") [±0.076mm]	T (±0.002") [±0.051mm]	Silicon	Alumina	POWER RATING ¹
0602	MSMT	116	0.057" [1.448]	0.017" [0.432]	0.010" [0.254]	80Ω to $2k\Omega$	80Ω to $2k\Omega$	125mW
0303	MSMT	117	0.030" [0.762]	0.030" [0.762]	0.010" [0.254]	80Ω to 240kΩ	80Ω to $50k\Omega$	250mW
0303	MSMT	125	0.034" [0.864]	0.034" [0.864]	0.010" [0.254]	550Ω to 500kΩ	80Ω to $50k\Omega$	250mW

¹ Power Rating at 70°C Derated Linearly to 0% at 150°C

² Total Resistance

PART NUMBER DESIGNATION

MSMT STYLE MSMT	125 TYPE 116 117 125	- S SUBSTRATE S = Silicon A = Alumina	T — RESISTOR FILM T = Tantalum Nitride	550R0 OHMIC VALUE 5-Digit Number: 1st 4 digits are significant with "R" as decimal point when required. 5th digit	K TOLERANCE J = ±5% K = ±10%	G = Gold Bond Pads G = Gold Bond Pads E = Aluminum Pads GB = Gold Backside
				when required. 5th digit represents number of zeros.		

EXAMPLE: MSMT-125-ST-550R0K-G

MSMT-125 Series, Silicon, Tantalum Nitride , 550Ω , $\pm 10\%$ Tol., Gold Bond Pads, Bare Backside

MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

THIN FILM DIVISION

MULTI-TAP RESISTORS

GENERAL CHARACTERISTICS

Tolerance	±5% or ±10% (Applies to Total Resistance)		
Current Noise	-30dB Max.		
Voltage Rating	100V		
Bond Pads	Gold (Standard), Aluminum (Optional)		
Backside	Bare Substrate (Standard) Gold Back (Optional)		
Operating Temperature	-55°C to +150°C		
Storage Temperature	-65°C to +150°C		

SUBSTRATE CHARACTERISTICS

SUBSTRATE MATERIAL	Dielectric Constant @ 1MHz	Thermal Conductivity W/m∙K	
99.6% Alumina	9.9	28	
Silicon (with 12kÅ SiO ₂)	N/A (SiO ₂ 3.9)	149 (SiO ₂ 1.38)	

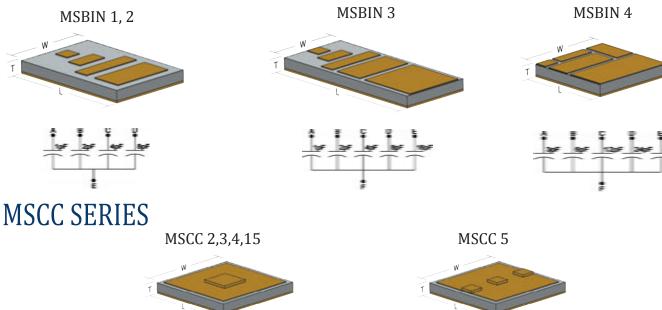
RESISTOR CHARACTERISTICS

RESISTOR FILM	Passivation	TCR
Tantalum Nitride	Ta_2O_5 (Self Passivating)	±150 ppm/°C

PERFORMANCE SPECIFICATIONS

PROPERTY	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	2.5xWVDC(6.25xRATED POWER)MIL-PRF-55342, +25°C, 5 SEC	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
HIGH TEMP EXPOSURE	+150°C, 100HRS	± 0.20 MAX $\Delta R/R$	±0.03 MAX ΔR/R
THERMAL SHOCK	MIL-STD 202, METHOD 107	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
MOISTURE RESISTANCE	MIL-STD 202, METHOD 106	± 0.40 MAX $\Delta R/R$	±0.10 MAX ΔR/R
STABILITY	MIL-STD 202 METHOD 108, 2000 HRS, +70°C, RATED POWER	± 0.50 MAX $\Delta R/R$	±0.10 MAX ΔR/R

All MSMT Series parts are produced on the same manufacturing line using the same materials and processes as parts manufactured to MIL-PRF-55342



THIN FILM DIVISION ISO 9001 CERTIFIED

M.O.S. CHIP CAPACITORS

MSBIN SERIES

GENERAL CHARACTERISTICS

Substrate	Silicon	
Dielectric	Silicon Dioxide	
Bond Pad	Gold (Standard), Aluminum (Optional)	
Backside	Gold	
тсс	+45 ±25ppm/°C	
Operating Temperature Range	-55°C to +150°C	
Dissipation Factor	1kHz, 1Vrms, 25°C, ≤0.1%	
Q-Factor	1MHz, 50Vrms, 25°C, 1000 Min.	
Insulation Resistance	≥10 ¹² Ω	

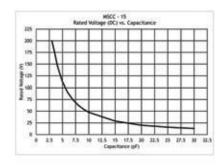
PART NUMBER DESIGNATION

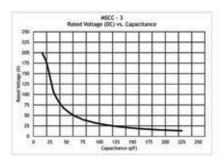
MSBIN	_ 1	S	<u> </u>	3R750	<u> </u>	G
STYLE	ТҮРЕ	SUBSTRATE	DIELECTRIC	CAPACITANCE VALUE	TOLERANCE	OPTION
MSCC MSBIN	See Table	S = Silicon	A = SiO ₂	5-Digit Number: 1st 4 digits are significant with "R" as decimal point when required. 5th digit rep- resents number of zeros. For MSBIN Series 3R750 = 3.75pF MSBIN1 15R00 = 15pF MSBIN2 31R00 = 31pF MSBIN3 93R00 = 93pF MSBIN4	$A = \pm 0.5 \text{pF}^*$ $H = \pm 2.5\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $P = \pm 25\%$ * Use for MSCC-2 4.7 \text{pF to 10 pF or N} 2.3 pF to 10 pF for N	E = Aluminum Pads G = Gold Bond Pads Std 4SCC-15
EXAMPLE: MS				·		
MS	BIN-1 Series, Si	licon, SiO ₂ , 3.75	pF Total Capacita	nce, ±10% Tol., Gold Bond Pads		

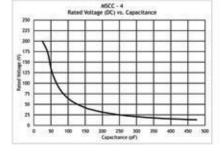
MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

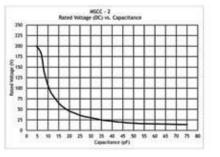
THIN FILM DIVISION

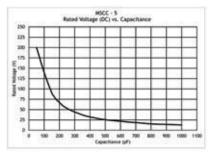
M.O.S. CHIP CAPACITORS

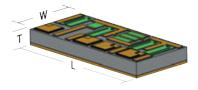

MSBIN SERIES Mini-Systems, Inc. MSBIN series thin film binary array chip capacitors are designed to established industry standards. The MSBIN series offer greater flexibility in capacitance value selection for Hybrid and Microwave circuits.


			DIMENSIONS						
CASE SIZE	STYLE	ТҮРЕ	L (±0.002") [±0.051mm]	W (±0.002") [±0.051mm]	T (±0.003") [±0.076mm]	TOTAL CAPACITANCE	INDIVIDUAL VALUES	TOLERANCE	RATED VOLTAGE
0203	MSBIN	1	0.019" [0.482]	0.030" [0.762]	0.010" [0.254]	3.75pF	0.25pF, 0.50pF, 1.0pF, 2.0pF	±25%	100VDC
0203	MSBIN	2	0.019" [0.482]	0.030" [0.762]	0.010" [0.254]	15pF	1pF, 2pF, 4pF, 8pF	±10%, ±20%	30VDC
0404	MSBIN	3	0.019" [0.482]	0.048" [1.219]	0.010" [0.254]	31pF	1pF, 2pF, 4pF, 8pF, 16pF	±10%, ±20%	75VDC
0505	MSBIN	4	0.044" [1.117]	0.044" [1.117]	0.010" [0.254]	93pF	3pF, 6pF, 12pF, 24pF, 48pF	±10%, ±20%	93VDC


MSCC SERIES


Mini-Systems, Inc. MSCC series MOS thin film chip capacitors are designed to established industry standards. The MSCC series is offered in a variety of sizes for both Hybrid and Microwave circuits. Connection to associated circuitry is completed by wire-bonding to the top and epoxy or eutectic attachment to the back.


			Ι	DIMENSION	s			
CASE SIZE	STYLE	ТҮРЕ	L (±0.002") [±0.051mm]	W (±0.002") [±0.051mm]	T (±0.003") [±0.076mm]	CAPACITANCE RANGE	TOLERANCE	
0101	MSCC	15	0.015" [0.381]	0.015" [0.381]	0.010" [0.254]	2.3pF to 10pF 11pF to 20pF 21pF to 30pF	±0.5pF ±5%, ±10%, ±2.5%, ±5%, ±10%,	
0202	MSCC	2	0.020" [0.508]	0.020" [0.508]	0.010" [0.254]	4.7pF to 10pF 11pF to 20pF 21pF to 70pF	±0.5pF ±5%,±10%, ±2.5%,±5%,±10%,	
0303	MSCC	3	0.030" [0.762]	0.030" [0.762]	0.010" [0.254]	13pF to 200pF	±2.5%, ±5%, ±10%,	
0404	MSCC	4	0.040" [1.016]	0.040" [1.016]	0.010" [0.254]	25pF to 400pF	±2.5%, ±5%, ±10%,	
0505	MSCC	5	0.055" [1.397]	0.055" [1.397]	0.010" [0.254]	50pF to 1000pF	±2.5%, ±5%, ±10%,	



8041 Rev. A

RC NETWORKS

The **MRCN** series offers the **high stability**, **low noise**, **and low T.C.R./T.C.C. tracking** of thin film resistors combined with MOS capacitors. Designed to your specifications, this series provides the flexibility needed for your custom applications

GENERAL CHARACTERISTICS

Termination Material	Gold (Standard) Aluminum (Optional)		
Backing Material	Gold		
Substrate Material	Silicon		
Operating Temperature	-55°C to +150°C		
Storage Temperature	-65°C to +150°C		
Insulation Resistance	$10^{12}\Omega$ Min.		
Dielectric Breakdown	400V Min.		
Operating Frequency	DC to 500MHz		

RESISTOR CHARACTERISTICS

Resistance Range	1Ω to $5M\Omega$	
Resistance Tolerance	±0.1% to ±10%	
Resistor	Tantalum Nitride	
Passivation	Ta ₂ O ₅ (Self Passivating)	
T.C.R	±150 ppm/°C	
T.C.R Tracking	±2 ppm/°C	

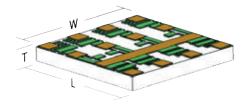
CAPACITOR CHARACTERISTICS

Capacitance Range	2.3pF to 1500pF	
Capacitance Tolerance	±5% to ±20%	
Dielectric	SiO ₂	
Dielectric Constant @ 1MHz	3.9	
T.C.C	+45 ±25 ppm/°C	
Insulation Resistance (@ Working Voltage)	10°Ω	
Dissipation Factor (1kHz, 1Vrms, 25 °C)	0.1%	
Q Factor (1MHz, 50Vrms, 25 °C)	1000 Min	

SUBSTRATE CHARACTERISTICS

	Available	Dielectric Thermal Constant Conductivity @ 1MHz W/m• K	Current Noise		
SUBSTRATE MATERIAL	Thickness			101Ω to 250kΩ	≤100Ω > 250kΩ
Silicon (with 12kÅ SiO ₂)	0.005" - 0.015"	N/A (SiO ₂ 3.9)	149 (SiO ₂ 1.38)	-40 dB	-30 dB

PERFORMANCE SPECIFICATIONS


PROPERTY	COMPONENT	TEST CONDITION	REQUIRED LIMITS	MSI TYPICAL LIMITS
SHORT TERM OVERLOAD	RESISTOR	2.5xWVDC (6.25xRATED POWER)MIL- PRF-55342, +25°C, 5 SEC	± 0.25 MAX $\Delta R/R$	±0.10 MAX ΔR/R
	CAPACITOR	1.5X WORKING VOLTAGE, 5 SEC	± 0.5 pF or 1% OF Δ C MAX	±0.10pF
HIGH TEMP EXPOSURE	RESISTOR	+150°C, 100HRS	±0.20 MAX ΔR/R	±0.03 MAX ΔR/R
CAPACITOR		+150°C, 100HRS	$\pm 0.5 pF$ or 1% of ΔC MAX	±0.05pF
THERMAL SHOCK	RESISTOR	MIL-STD 202, METHOD 107	±0.25 MAX ΔR/R	±0.10 MAX ΔR/R
I HERMAL SHOCK	CAPACITOR	MIL-STD 202, METHOD 107	±0.5pF MAX	±0.1pF
MOICTUDE DECICTANCE	RESISTOR	MIL-STD 202, METHOD 106	±0.40 MAX ΔR/R	±0.10 MAX ΔR/R
MOISTURE RESISTANCE CAPACITOR		MIL-STD 202, METHOD 106	$\pm 1 pF$ or 2% of ΔC MAX	
CTADILITY	RESISTOR	1000 HRS, +70°C, @ RATED POWER	±0.50 MAX ΔR/R	±0.10 MAX ∆R/R
STABILITY	CAPACITOR	1000 HRS, +70°C, @ WORKING VOLTAGE	±2.5pF or 2.5% MAX	

MINI SYSTEMS INC. MADE IN AMERICA SINCE 1968

CUSTOM PATTERNED SUBSTRATES

Advanced manufacturing methods insure superior sheet rho uniformity, metallization adhesion and thickness control. Our manufacturing capabilities allow us to meet and exceed your most demanding custom requirements.

GENERAL CHARACTERISTICS

Resistance Tolerance	±0.01% to ±10%		
Resistance Ratio	±0.01% Available		
T.C.R. Tracking	To ±2 ppm/°C		
Termination Material	Gold, Aluminum		
Size	Up to 4"x 4"		
Line Width Definition Resistor	Resistor Patterning to 0.1 mils		
Line Width Definition (Cond.)	0.2 mils		
Metals Available	NiChrome, Tantalum, SiChrome, Palladium, TiTungsten, Gold, Nickel, Aluminum		
Specialty Materials	Metalization available on 1-6 sides. Through-Holes, Edge Wraps and Custom Laser Cutouts		

SUBSTRATE CHARACTERISTICS

	Available	Dielectric	Thermal	Current Noise	
SUBSTRATE MATERIAL	Thickness @ 1MHz		Conductivity W/m• K	101Ω to $250k\Omega$	≤ 100Ω > 250kΩ
99.6% Alumina	0.005" - 0.025"	9.9	28	-35 dB	-30 dB
Silicon (with 12kÅ SiO ₂)	0.005" - 0.015"	N/A (SiO ₂ 3.9)	149 (SiO ₂ 1.38)	-40 dB	-30 dB
Quartz	0.005" - 0.010"	3.75	1.3	-40 dB	-30 dB
Beryllium Oxide	0.010" - 0.025"	6.7	300	-35 dB	-30 dB
Aluminum Nitride	0.010" - 0.025"	9.0	140 - 177	-35 dB	-30 dB

RESISTOR CHARACTERISTICS

RESISTOR FILM	Sheet Rho	Passivation	Standard TCR	TCR Optional To
Tantalum Nitride	$5\Omega/sq.$ to $250\Omega/sq.$	Ta_2O_5 (Self Passivating)	±150 ppm/°C	±10 ppm/°C
NiChrome	$5\Omega/sq.$ to $200\Omega/sq.$	SiO ₂ or Si ₃ N ₄	±25 ppm/°C	±5 ppm/°C
SiChrome	$500\Omega/sq.$ to $2.5k\Omega/sq.$	SiO ₂ or Si ₃ N ₄	±150 ppm/°C	±100 ppm/°C

AVAILABLE TESTING

TEST	MILITARY STANDARD	NOTES			
Group A	•	·			
Thermal Shock	MIL-PRF-55342, MIL-STD-202, Method 107	-65°C to +150°C, 5 Cycles, 100%			
Element Electrical	MIL-PRF-55342, MIL-STD-202, Method 303	100%			
Visual Inspection	MIL-PRF-55342	30X-60X Magnification			
Solderability	MIL-PRF-55342, MIL-STD-202, Method 208	95% Coverage After 8 Hours Steam Aging			
Resistance to Solvents	MIL-PRF-55342, MIL-STD-202, Method 215	Parts with Color Coded Dots Only			
Power Conditioning (Space Level Only)	MIL-PRF-55342, MIL-STD-202, Method 108	100 Hours, 70°C, 1.5X Rated Power, 100%			
Group B	<u> </u>	·			
Resistance Temperature Characteristics	MIL-PRF-55342, MIL-STD-202, Method 304	-55°C, +25°C,+125°C			
Short Time Overload	MIL-PRF-55342	5 Sec., 2.5X WVDC, 6.25X Power Rating			
Solder Mounting Integrity	MIL-PRF-55342	Soldered Parts			
Bondable Mounting Integrity	MIL-PRF-55342	Epoxy Bondable Parts			
Wire Bonding Integrity	MIL-PRF-55342	Wire Bondable Parts			
Group C					
Life Test	MIL-PRF-55342, MIL-STD-202, Method 108	2,000 Hours, 70°C, Rated Power			
Thermal Shock	MIL-PRF-55342, MIL-STD-202, Method 107	-65°C to +150°C, 5 Cycles, Sample			
Low Temperature Operation	MIL-PRF-55342	45 Minutes, -65°C, Rated Power			
Resistance to Soldering Heat	MIL-PRF-55342, MIL-STD-202, Method 210	Soldered Parts			
Resistance to Bonding Exposure	MIL-PRF-55342	Wire and Epoxy Bondable Parts			
Moisture Resistance	MIL-PRF-55342, MIL-STD-202, Method 106	Unpowered			
High Temperature Exposure	MIL-PRF-55342	100 Hours, 150°C			
Class H & K					
Element Electrical	MIL-PRF-38534	Per acquisition document			
Visual Inspection	MIL-STD-883, Method 2032, Class H & K	Class H: Sample Class K: 100%			
Wire Bond Evaluation	MIL-STD-883, Method 2011	Wire Bondable Parts			
Class K					
Temperature Cycling	MIL-STD-883, Method 1010	-65°C to +150°C, 10 Cycles, Sample			
Constant Acceleration	MIL-STD-883, Method 2001, Condition B	10,000g			
Voltage Conditioning or Aging	MIL-PRF-55342	100 Hours, 70°C, Rated Power			
DC Leakage (Capacitors)	Not Applicable	<5 x 10 ⁻⁹ Amps at Working Voltage			
Dielectric Withstanding Voltage (Capacitors)	MIL-STD-202, Method 301	1.5X Working Voltage, 5 Sec.			
Dissipation Factor (Capacitors)	MIL-STD-202, Method 306	1KHz, 1Vrms, +25°C, ≤0.1%			
Salt Atmosphere (Packages)	MIL-STD-883, Method 1009	Off Site Testing			
Additional					
Current Noise	MIL-STD-202, Method 308	Requirements per Value and Material			
Device Finish	MIL-PRF-38534	Per Acquisition Document			
Die Shear	MIL-STD-883, Method 2019	Requirements per Die Size			
Insulation Resistance (Capacitors)	MIL-PRF-49464	$\leq 10^{12} \Omega$ at working voltage			
Q- Factor (Capacitors)	MIL-STD-202, Method 306	1MHz, 50Vrms, 25°C, 1000 Min.			
SEM Analysis	MIL-STD-883, Method 2018	Off Site Testing			
Temperature Coefficient of Capacitance	MIL-PRF-49464	Per Acquisition Document			
Visual Inspection	MIL-STD-883, Method 2017	Sample or 100%			

SINCE 1968